Skip to main content

Perspectives in New Advances in Retinal Neovascularization Pathogenesis and Therapeutic Approaches

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

  • 901 Accesses

Abstract

Ocular neovascularization (NV) is the primary cause of catastrophic loss of vision in vast majority of ocular diseases including age-related macular degeneration, proliferative diabetic retinopathy and retinopathy of prematurity. The development of abnormal blood vessels in these patients is driven by a complex signaling process involving pro-angiogenic mediators such as vascular endothelial growth factor (VEGF) and anti-angiogenic factors, such as pigment epithelium-derived factor. Current anti-VEGF drugs such as ranibizumab, aflibercept and “off-label” bevacizumab are effective in only 30–40% of patients and are typically associated with undesirable route of administration, increased risk of infection and high clinical costs. This therefore increases the urgency to discover and develop additional therapeutics that are safer and more efficacious. In the last few years, several studies have contributed to understanding the underlying pathogenesis of ocular NV and the roles of different signaling cascades. Thus, this article aims to review molecular mechanisms regulating ocular NV and emerging therapeutic strategies to treat this group of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith LE, Wesolowski E, McLellan A et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111

    CAS  PubMed  Google Scholar 

  2. Lambert V, Lecomte J, Hansen S et al (2013) Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 8(11):2197–2211

    Article  CAS  PubMed  Google Scholar 

  3. Rosenfeld PJ, Schwartz SD, Blumenkranz MS et al (2005) Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 112(6):1048–1053

    Article  PubMed  Google Scholar 

  4. Syed BA, Evans JB, Bielory L (2012) Wet AMD market. Nat Rev Drug Discov 11(11):827

    Article  CAS  PubMed  Google Scholar 

  5. Gao G, Ma J (2002) Tipping the balance for angiogenic disorders. Drug Discov Today 7(3):171–172

    Article  PubMed  Google Scholar 

  6. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617

    Article  CAS  PubMed  Google Scholar 

  7. Anderson DH, Mullins RF, Hageman GS et al (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  CAS  PubMed  Google Scholar 

  8. Hageman GS, Luthert PJ, Victor Chong NH et al (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732

    Article  CAS  PubMed  Google Scholar 

  9. Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58(3):353–363

    CAS  PubMed  Google Scholar 

  10. Tielsch JM, Javitt JC, Coleman A et al (1995) The prevalence of blindness and visual impairment among nursing home residents in Baltimore. N Engl J Med 332(18):1205–1209

    Article  CAS  PubMed  Google Scholar 

  11. Friedman DS, O'Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  12. Ferris FL 3rd, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102(11):1640–1642

    Article  PubMed  Google Scholar 

  13. Chew EY, Klein ML, Ferris FL 3rd et al (1996) Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early treatment diabetic retinopathy study (ETDRS) report 22. Arch Ophthalmol 114(9):1079–1084

    Article  CAS  PubMed  Google Scholar 

  14. Fong DS, Aiello L, Gardner TW et al (2003) Diabetic retinopathy. Diabetes Care 26(Suppl 1):S99–S102

    Article  PubMed  Google Scholar 

  15. Singh R, Ramasamy K, Abraham C et al (2008) Diabetic retinopathy: an update. Indian J Ophthalmol 56(3):178–188

    PubMed  Google Scholar 

  16. Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    Article  PubMed  PubMed Central  Google Scholar 

  17. Foster A, Gilbert C (1992) Epidemiology of childhood blindness. Eye (Lond) 6(Pt 2):173–176

    Article  Google Scholar 

  18. Smith LE (2004) Pathogenesis of retinopathy of prematurity. Growth Hormon IGF Res 14(Suppl A):S140–S144

    Article  CAS  Google Scholar 

  19. Ashton N, Ward B, Serpell G (1954) Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol 38(7):397–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azad RV, Chandra P (2003) Retinopathy of prematurity--screening and management. J Indian Med Assoc 101(10):593–596

    PubMed  Google Scholar 

  21. Hughes S, Yang HJ, Chan-Ling T (2000) Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 41(5):1217–1228

    CAS  PubMed  Google Scholar 

  22. Noden DM (1989) Embryonic origins and assembly of blood-vessels. Am Rev Respir Dis 140(4):1097–1103

    Article  CAS  PubMed  Google Scholar 

  23. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  24. Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20(6):799–821

    Article  CAS  PubMed  Google Scholar 

  25. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10(2):77–88

    Article  PubMed  Google Scholar 

  26. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  CAS  PubMed  Google Scholar 

  27. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luna J, Tobe T, Mousa SA et al (1996) Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Investig 75(4):563–573

    CAS  PubMed  Google Scholar 

  29. Saint-Geniez M, D'Amore PA (2004) Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 48(8–9):1045–1058

    Article  PubMed  Google Scholar 

  30. Campochiaro PA (2013) Ocular neovascularization. J Mol Med (Berl) 91(3):311–321

    Article  CAS  Google Scholar 

  31. Shui YB, Wang X, Hu JS et al (2003) Vascular endothelial growth factor expression and signaling in the lens. Invest Ophthalmol Vis Sci 44(9):3911–3919

    Article  PubMed  Google Scholar 

  32. Alon T, Hemo I, Itin A et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–1028

    Article  CAS  PubMed  Google Scholar 

  33. Miller JW, Adamis AP, Shima DT et al (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145(3):574–584

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Aiello LP, Pierce EA, Foley ED et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92(23):10457–10461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ozaki H, Seo MS, Ozaki K et al (2000) Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 156(2):697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gragoudas ES, Adamis AP, Cunningham ET Jr et al (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816

    Article  CAS  PubMed  Google Scholar 

  37. Heier JS, Antoszyk AN, Pavan PR et al (2006) Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology 113(4):633 e1–633 e4

    Article  Google Scholar 

  38. Stewart MW (2012) Aflibercept (VEGF trap-eye): the newest anti-VEGF drug. Br J Ophthalmol 96(9):1157–1158

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koh A, Lee WK, Chen LJ et al (2012) EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 32(8):1453–1464

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt-Erfurth U, Schlotzer-Schrehard U, Cursiefen C et al (2003) Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 44(10):4473–4480

    Article  PubMed  Google Scholar 

  41. Augustin AJ, Schmidt-Erfurth U (2006) Verteporfin therapy combined with intravitreal triamcinolone in all types of choroidal neovascularization due to age-related macular degeneration. Ophthalmology 113(1):14–22

    Article  PubMed  Google Scholar 

  42. Amoaku WM, Chakravarthy U, Gale R et al (2015) Defining response to anti-VEGF therapies in neovascular AMD. Eye (Lond) 29(6):721–731

    Article  CAS  Google Scholar 

  43. Scott IU, Flynn HW Jr (2007) Reducing the risk of endophthalmitis following intravitreal injections. Retina 27(1):10–12

    Article  PubMed  Google Scholar 

  44. Karagiannis DA, Mitropoulos P, Ladas ID (2009) Large subretinal haemorrhage following change from intravitreal bevacizumab to ranibizumab. Ophthalmologica 223(4):279–282

    Article  CAS  PubMed  Google Scholar 

  45. Tolentino M (2011) Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 56(2):95–113

    Article  PubMed  Google Scholar 

  46. Meyer CH, Michels S, Rodrigues EB et al (2011) Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol 89(1):70–75

    Article  CAS  PubMed  Google Scholar 

  47. Bai YJ, Huang LZ, Zhou AY et al (2013) Antiangiogenesis effects of endostatin in retinal neovascularization. J Ocul Pharmacol Ther 29(7):619–626

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Li Y, Cheng Y et al (2015) Tat PTD-endostatin: a novel anti-angiogenesis protein with ocular barrier permeability via eye-drops. Biochim Biophys Acta 1850(6):1140–1149

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Li L, Li Z et al (2016) Tat PTD-Endostatin-RGD: a novel protein with anti-angiogenesis effect in retina via eye drops. Biochim Biophys Acta 1860(10):2137–2147

    Article  CAS  PubMed  Google Scholar 

  50. Barnstable CJ, Tombran-Tink J (2004) Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 23(5):561–577

    Article  CAS  PubMed  Google Scholar 

  51. Stellmach V, Crawford SE, Zhou W et al (2001) Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci U S A 98(5):2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spranger J, Osterhoff M, Reimann M et al (2001) Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50(12):2641–2645

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Ramirez M, Canals F, Hernandez C et al (2007) Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia 50(6):1294–1303

    Article  CAS  PubMed  Google Scholar 

  54. Mori K, Duh E, Gehlbach P et al (2001) Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 188(2):253–263

    Article  CAS  PubMed  Google Scholar 

  55. Amaral J, Becerra SP (2010) Effects of human recombinant PEDF protein and PEDF-derived peptide 34-mer on choroidal neovascularization. Invest Ophthalmol Vis Sci 51(3):1318–1326

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cayouette M, Smith SB, Becerra SP et al (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523–532

    Article  CAS  PubMed  Google Scholar 

  57. Chen HB, Jia WP, Lu JX et al (2007) Change and significance of serum pigment epithelium-derived factor in type 2 diabetic nephropathy. Zhonghua Yi Xue Za Zhi 87(18):1230–1233

    CAS  PubMed  Google Scholar 

  58. Jenkins AJ, Fu D, Azar M et al (2014) Clinical correlates of serum pigment epithelium-derived factor in type 2 diabetes patients. J Diabetes Complicat 28(3):353–359

    Article  PubMed  PubMed Central  Google Scholar 

  59. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    CAS  PubMed  Google Scholar 

  61. Betsholtz C, Karlsson L, Lindahl P (2001) Developmental roles of platelet-derived growth factors. BioEssays 23(6):494–507

    Article  CAS  PubMed  Google Scholar 

  62. Seo MS, Okamoto N, Vinores MA et al (2000) Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am J Pathol 157(3):995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Freyberger H, Brocker M, Yakut H et al (2000) Increased levels of platelet-derived growth factor in vitreous fluid of patients with proliferative diabetic retinopathy. Exp Clin Endocrinol Diabetes 108(2):106–109

    Article  CAS  PubMed  Google Scholar 

  64. Dong A, Seidel C, Snell D et al (2014) Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis 17(3):553–562

    CAS  PubMed  Google Scholar 

  65. Jaffe GJ, Eliott D, Wells JA et al (2016) A phase 1 study of Intravitreous E10030 in combination with Ranibizumab in Neovascular age-related macular degeneration. Ophthalmology 123(1):78–85

    Article  PubMed  Google Scholar 

  66. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  CAS  PubMed  Google Scholar 

  67. Santulli RJ, Kinney WA, Ghosh S et al (2008) Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther 324(3):894–901

    Article  CAS  PubMed  Google Scholar 

  68. Bornstein P (2009) Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 3(3–4):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  69. Miyajima-Uchida H, Hayashi H, Beppu R et al (2000) Production and accumulation of thrombospondin-1 in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 41(2):561–567

    CAS  PubMed  Google Scholar 

  70. Wang S, Wu Z, Sorenson CM et al (2003) Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn 228(4):630–642

    Article  CAS  PubMed  Google Scholar 

  71. Uno K, Bhutto IA, McLeod DS et al (2006) Impaired expression of thrombospondin-1 in eyes with age related macular degeneration. Br J Ophthalmol 90(1):48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang S, Gottlieb JL, Sorenson CM et al (2009) Modulation of thrombospondin 1 and pigment epithelium-derived factor levels in vitreous fluid of patients with diabetes. Arch Ophthalmol 127(4):507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang S, Sorenson CM, Sheibani N (2012) Lack of thrombospondin 1 and exacerbation of choroidal neovascularization. Arch Ophthalmol 130(5):615–620

    Article  PubMed  PubMed Central  Google Scholar 

  74. Uchida H, Kuroki M, Shitama T et al (2008) Activation of TGF-beta1 through up-regulation of TSP-1 by retinoic acid in retinal pigment epithelial cells. Curr Eye Res 33(2):199–203

    Article  CAS  PubMed  Google Scholar 

  75. Dreyer C, Krey G, Keller H et al (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68(5):879–887

    Article  CAS  PubMed  Google Scholar 

  76. Marx N, Sukhova GK, Collins T et al (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99(24):3125–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Y, Hu Y, Lin M et al (2013) Therapeutic effects of PPARalpha agonists on diabetic retinopathy in type 1 diabetes models. Diabetes 62(1):261–272

    Article  CAS  PubMed  Google Scholar 

  78. Keech A, Simes RJ, Barter P et al (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500):1849–1861

    Article  CAS  PubMed  Google Scholar 

  79. Ismail-Beigi F, Craven T, Banerji MA et al (2010) Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376(9739):419–430

    Article  PubMed  PubMed Central  Google Scholar 

  80. Goodwin AM, D’Amore PA (2002) Wnt signaling in the vasculature. Angiogenesis 5(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  81. Tamai K, Zeng X, Liu C et al (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13(1):149–156

    Article  CAS  PubMed  Google Scholar 

  82. Chen Y, Hu Y, Zhou T et al (2009) Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol 175(6):2676–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee K, Hu Y, Ding L et al (2012) Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy. Diabetes 61(11):2948–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gardner TW, Antonetti DA, Barber AJ et al (2002) Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 47(Suppl 2):S253–S262

    Article  PubMed  Google Scholar 

  85. Cabrera M, Yeh S, Albini TA (2014) Sustained-release corticosteroid options. J Ophthalmol 2014:164692

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haller JA, Bandello F, Belfort R Jr et al (2010) Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 117(6):1134–1146.e3

    Article  PubMed  Google Scholar 

  87. Campochiaro PA, Brown DM, Pearson A et al (2012) Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 119(10):2125–2132

    Article  PubMed  Google Scholar 

  88. Sivaprasad S, Adewoyin T, Bailey TA et al (2007) Estimation of systemic complement C3 activity in age-related macular degeneration. Arch Ophthalmol 125(4):515–519

    Article  CAS  PubMed  Google Scholar 

  89. Gerl VB, Bohl J, Pitz S et al (2002) Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 43(4):1104–1108

    PubMed  Google Scholar 

  90. Sahu A, Morikis D, Lambris JD (2003) Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol Immunol 39(10):557–566

    Article  CAS  PubMed  Google Scholar 

  91. Chi ZL, Yoshida T, Lambris JD et al (2010) Suppression of drusen formation by compstatin, a peptide inhibitor of complement C3 activation, on cynomolgus monkey with early-onset macular degeneration. Adv Exp Med Biol 703:127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ni Z, Hui P (2009) Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica 223(6):401–410

    Article  CAS  PubMed  Google Scholar 

  93. Barajas-Espinosa A, Ni NC, Yan D et al (2012) The cysteinyl leukotriene 2 receptor mediates retinal edema and pathological neovascularization in a murine model of oxygen-induced retinopathy. FASEB J 26(3):1100–1109

    Article  CAS  PubMed  Google Scholar 

  94. Reynolds AL, Alvarez Y, Sasore T et al (2016) Phenotype-based discovery of 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol as a novel regulator of ocular angiogenesis. J Biol Chem 291(14):7242–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Galvin O, Srivastava A, Carroll O et al (2016) A sustained release formulation of novel quininib-hyaluronan microneedles inhibits angiogenesis and retinal vascular permeability in vivo. J Control Release 233:198–207

    Article  CAS  PubMed  Google Scholar 

  96. Alvarez Y, Astudillo O, Jensen L et al (2009) Selective inhibition of retinal angiogenesis by targeting PI3 kinase. PLoS One 4(11):e7867

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sasore T, Reynolds AL, Kennedy BN (2014) Targeting the PI3K/Akt/mTOR pathway in ocular neovascularization. Adv Exp Med Biol 801:805–811

    Article  PubMed  Google Scholar 

  98. Sasore T, Kennedy B (2014) Deciphering combinations of PI3K/AKT/mTOR pathway drugs augmenting anti-angiogenic efficacy in vivo. PLoS One 9(8):e105280

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dejneka NS, Kuroki AM, Fosnot J et al (2004) Systemic rapamycin inhibits retinal and choroidal neovascularization in mice. Mol Vis 10:964–972

    CAS  PubMed  Google Scholar 

  100. Yagasaki R, Nakahara T, Ushikubo H et al (2014) Anti-angiogenic effects of mammalian target of rapamycin inhibitors in a mouse model of oxygen-induced retinopathy. Biol Pharm Bull 37(11):1838–1842

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xing Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sasore, T., Ma, JX. (2017). Perspectives in New Advances in Retinal Neovascularization Pathogenesis and Therapeutic Approaches. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_19

Download citation

Publish with us

Policies and ethics