Skip to main content

microRNAs, Angiogenesis and Atherosclerosis

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

  • 865 Accesses

Abstract

MicroRNAs are short non-coding regulatory RNA molecules that control post-transcriptional gene expression and are involved in several physiological and pathological processes in different species, as well-conserved characters. Their dysregulation has been described in various cardiovascular diseases, including atherosclerosis, coronary heart disease and acute myocardial infarction. A possible role as novel biomarkers has been proposed for some circulating microRNAs with potential prognostic implications. Though still in their infancy, microRNA-based therapies have been enthusiastically welcomed as innovative treatments. This chapter briefly outlines the role of microRNAs in the diagnosis and prognosis of atherosclerosis and coronary heart disease as well as their therapeutic use for patients afflicted with these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACS:

Acute coronary syndrome

AMI:

Acute myocardial infarction

apo:

Apolipoprotein

CAD:

Coronary artery disease

CV:

Cardiovascular

DGCR8:

Di George syndrome critical region 8

DNA:

Deoxyribonucleic acid

EC:

Endothelial cell

ECM:

Extracellular matrix

EPC:

Endothelial progenitor cell

HDL:

High-density lipoprotein

hs-cTNT:

High-sensitivity cardiac troponin T

HUVEC:

Human umbilical vein endothelial cells

KO:

Knockout

LDL:

Low-density lipoprotein

LNA:

Locked nucleic acid

MAP kinase:

Mitogen-activated protein kinase

miRNA:

microRNA

mRNA:

messenger RNA

qRT-PCR:

Quantitative real-time polymerase chain reaction

RNA:

Ribonucleic acid

SOCS1:

Suppressor of cytokine signaling 1

STAT3:

Signal transducer and activator of transcription 3

TF:

Tissue factor

TGF-β:

Transforming growth factor-β

TRBP:

TAR RNA-binding protein

VEGF:

Vascular endothelial growth factor

VLDL:

Very low-density lipoprotein

VSMC:

Vascular smooth muscle cells

UTR:

Untranslated region

References

  1. Busch A, Eken SM, Maegdefessel L (2016) Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. Ann Transl Med 4(12):236

    Article  PubMed  PubMed Central  Google Scholar 

  2. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  4. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  5. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  PubMed  Google Scholar 

  6. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. doi:10.1038/nrg2843

    CAS  PubMed  Google Scholar 

  7. Cavarretta E, Frati G, Condorelli G (2013) MicroRNA and cardiovascular disorders with a focus on angiogenesis. In: Mehta JL, Dhalla NS (eds) Biochemical basis and therapeutic implications of angiogenesis. Springer, New York, pp 479–497

    Chapter  Google Scholar 

  8. Meijer HA, Smith EM, Bushell M (2014) Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans 42(4):1135–1140

    Article  CAS  PubMed  Google Scholar 

  9. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  PubMed  Google Scholar 

  10. Cavarretta E, Frati G (2016) MicroRNAs in coronary heart disease: ready to enter the clinical arena? Biomed Res Int 2016:2150763. doi:10.1155/2016/2150763

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raitoharju E, Oksala N, Lehtimäki T (2013) MicroRNAs in the atherosclerotic plaque. Clin Chem 59(12):1708–1721. doi:10.1373/clinchem.2013.204917

    Article  CAS  PubMed  Google Scholar 

  12. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 105(5):1516–1521. doi:10.1073/pnas.0707493105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 97:47–55. doi:10.1016/j.yjmcc.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  14. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53(1):64–72. doi:10.1016/j.yjmcc.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  15. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20(4):368–376. doi:10.1038/nm.3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodríguez P, Higueras MA, González-Rajal A, Alfranca A, Fierro-Fernández M, García-Fernández RA, Ruiz-Hidalgo MJ, Monsalve M, Rodríguez-Pascual F, Redondo JM, de la Pompa JL, Laborda J, Lamas S (2012) The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res 93(2):232–241. doi:10.1093/cvr/cvr296

    Article  PubMed  Google Scholar 

  17. Witkowski M, Weithauser A, Tabaraie T, Steffens D, Kränkel, Witkowski M, Stratmann B, Tschoepe D, Landmesser U, Rauch-Kroehnert U (2016) Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler Thromb Vasc Biol 36(6):1263–1271. doi:10.1161/ATVBAHA.115.306094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Kim CW, Simmons RD, Jo H (2014) Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 34(10):2206–2216. doi:10.1161/ATVBAHA.114.303425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santulli G (2015) microRNAs distinctively regulate vascular smooth muscle and endothelial cells: functional implications in angiogenesis, atherosclerosis, and in-stent restenosis. Adv Exp Med Biol 887:53–77. doi:10.1007/978-3-319-22380-3_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schober A, Weber C (2016) Mechanisms of MicroRNAs in Atherosclerosis. Annu Rev Pathol 11:583–616. doi:10.1146/annurev-pathol-012615-044135

    Article  CAS  PubMed  Google Scholar 

  21. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710. doi:10.1038/nature08195

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598. doi:10.1038/cdd.2009.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, Steer BM, Ingram AJ, Gupta M, Al-Omran M, Teoh H, Marsden PA, Verma S (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126(11 Suppl 1):S81–S90

    Article  CAS  PubMed  Google Scholar 

  24. Sala F, Aranda JF, Rotllan N, Ramírez CM, Aryal B, Elia L, Condorelli G, Catapano AL, Fernández-Hernando C, Norata GD (2014) MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice. Thromb Haemost 112(4):796–802. doi:10.1160/TH13-11-0905

    Article  PubMed  PubMed Central  Google Scholar 

  25. Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L (2015) TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res 116(11):1753–1764

    Article  CAS  PubMed  Google Scholar 

  26. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256

    Article  CAS  PubMed  Google Scholar 

  27. Ramanujam D, Engelhardt S (2015) Intercellular miRNA Traffic. Circ Res 116(11):1726–1728. doi:10.1161/CIRCRESAHA.115.306519

    Article  CAS  PubMed  Google Scholar 

  28. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chamorro-Jorganes A, Lee MY, Araldi E, Landskroner-Eiger S, Fernández-Fuertes M, Sahraei M, Quiles Del Rey M, van Solingen C, Yu J, Fernández-Hernando C, Sessa WC, Suárez Y (2016) VEGF-Induced Expression of miR-17-92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circ Res 118(1):38–47. doi:10.1161/CIRCRESAHA.115.307408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  CAS  PubMed  Google Scholar 

  31. Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul JL, Julia P, Maccario J, Boulanger CM, Mallat Z, Tedgui A (2014) Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 114(3):434–443. doi:10.1161/CIRCRESAHA.114.302213

    Article  CAS  PubMed  Google Scholar 

  32. Landskroner-Eiger S, Qiu C, Perrotta P, Siragusa M, Lee MY, Ulrich V, Luciano AK, Zhuang ZW, Corti F, Simons M, Montgomery RL, Wu D, Yu J, Sessa WC (2015) Endothelial miR-17∼92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling. Proc Natl Acad Sci U S A 112(41):12812–12817. doi:10.1073/pnas.1507094112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang Y, Zhang YC, Chen Y, Xiang Y, Shen CX, Li YG (2015) The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease. Sci Rep 5:15132. doi:10.1038/srep15132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128(13):1420–1432. doi:10.1161/CIRCULATIONAHA.112.001357

    Article  CAS  PubMed  Google Scholar 

  35. Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, Summer G, Coort SL, Hazebroek M, van Leeuwen R, Gijbels MJ, Wijnands E, Biessen EA, De Winther MP, Stassen FR, Carmeliet P, Kauppinen S, Schroen B, Heymans S (2012) MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res 111(4):415–425. doi:10.1161/CIRCRESAHA.112.267443

    Article  CAS  PubMed  Google Scholar 

  36. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X, Guo Z, Liu J, Wang Y, Yuan W, Qin Y (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215(2):286–293. doi:10.1016/j.atherosclerosis.2010.12.024

    Article  CAS  PubMed  Google Scholar 

  37. Eisenhardt SU, Weiss JB, Smolka C, Maxeiner J, Pankratz F, Bemtgen X, Kustermann M, Thiele JR, Schmidt Y, Bjoern Stark G, Moser M, Bode C, Grundmann S (2015) MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst. Basic Res Cardiol 110(3):32. doi:10.1007/s00395-015-0490-9

    Article  PubMed  Google Scholar 

  38. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C, Schober A (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122(11):4190–4202. doi:10.1172/JCI61716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY, Zeng A, Zou J, Zhu RF, Han XS, Shen N, Yang HT, Zhao XX, Huang S, Qin YW, Jing Q (2014) Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res 103(1):100–110. doi:10.1093/cvr/cvu070

    Article  CAS  PubMed  Google Scholar 

  40. Welten SM, Goossens EA, Quax PH, Nossent AY (2016) The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res 110(1):6–22. doi:10.1093/cvr/cvw039

    Article  CAS  PubMed  Google Scholar 

  41. Kin K, Miyagawa S, Fukushima S, Shirakawa Y, Torikai K, Shimamura K, Daimon T, Kawahara Y, Kuratani T, Sawa Y (2012) Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc 1(5):e000745. doi:10.1161/JAHA.112.000745

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100(11):1579–1588

    Article  CAS  PubMed  Google Scholar 

  43. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61. doi:10.1038/nature07086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cavarretta E, Latronico MV, Condorelli G (2012) Endothelial-to-mesenchymal transition and microRNA-21: the game is on again. Arterioscler Thromb Vasc Biol 32(2):165–166. doi:10.1161/ATVBAHA.111.242008

    Article  CAS  PubMed  Google Scholar 

  45. Cavarretta E, Condorelli G (2015) miR-21 and cardiac fibrosis: another brick in the wall? Eur Heart J 36(32):2139–2141. doi:10.1093/eurheartj/ehv184

    Article  CAS  PubMed  Google Scholar 

  46. Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L (2015) Local MicroRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol 35(9):1945–1953. doi:10.1161/ATVBAHA.115.305597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJ, Vinciguerra M, Rosenthal N, Sciacca S, Pilato M, van Heijningen P, Essers J, Brandes RP, Zeiher AM, Dimmeler S (2011) MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res 109(10):1115–1119. doi:10.1161/CIRCRESAHA.111.255737

    Article  CAS  PubMed  Google Scholar 

  48. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105(35):13027–13032. doi:10.1073/pnas.0805038105

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa MP, Contaldi C, Saccani Jotti G, Franzone A, Galastri L, Latronico MV, Imbriaco M, Esposito G, De Windt L, Betocchi S, Condorelli G (2014) Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 63(9):920–927. doi:10.1016/j.jacc.2013.09.041

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schmalz G, Li S, Burkhardt R, Rinke S, Krause F, Haak R, Ziebolz D (2016) MicroRNAs as Salivary Markers for Periodontal Diseases: A New Diagnostic Approach? Biomed Res Int 2016:1027525

    Article  PubMed  PubMed Central  Google Scholar 

  54. György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688. doi:10.1007/s00018-011-0689-3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsui NB, Ng EK, Lo YM (2002) Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 48(10):1647–1653

    CAS  PubMed  Google Scholar 

  57. Condorelli G, Latronico MV, Cavarretta E (2014) microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63(21):2177–2187. doi:10.1016/j.jacc.2014.01.050

    Article  CAS  PubMed  Google Scholar 

  58. Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Papaioanou S, Tousoulis D (2015) The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment. Atherosclerosis 241(2):624–633

    Article  CAS  PubMed  Google Scholar 

  59. Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, Zhu J, Yan JJ, Zhang DG, Yang ZJ, Wang LS (2012) Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M (2012) Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 60(4):290–299

    Article  CAS  PubMed  Google Scholar 

  61. Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS, Sinning JM, Vasa-Nicotera M, Nickenig G, Werner N (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3(6):e001249

    Article  PubMed  PubMed Central  Google Scholar 

  62. D’Alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P, Rubino M, Marenzi G, Colombo GI, Achilli F, Maggiolini S, Capogrossi MC, Pompilio G (2013) Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS One 8(11):e80345. doi:10.1371/journal.pone.0080345

    Article  PubMed  PubMed Central  Google Scholar 

  63. Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M (2010) Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond) 119(9):395–405. doi:10.1042/CS20100003

    Article  CAS  Google Scholar 

  64. Leistner DM, Boeckel JN, Reis SM, Thome CE, De Rosa R, Keller T, Palapies L, Fichtlscherer S, Dimmeler S, Zeiher AM (2016) Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur Heart J 37(22):1738–1749. doi:10.1093/eurheartj/ehw047

    Article  PubMed  Google Scholar 

  65. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684

    Article  CAS  PubMed  Google Scholar 

  66. Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J, Vausort M, Reichlin T, Wildi K, Moehring B, Wagner DR, Mueller C (2015) Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med 277(2):260–271

    Article  CAS  PubMed  Google Scholar 

  67. Cavarretta E, Chiariello GA, Condorelli G (2013) Platelets, endothelium, and circulating microRNA-126 as a prognostic biomarker in cardiovascular diseases: per aspirin ad astra. Eur Heart J 34(44):3400–3402. doi:10.1093/eurheartj/eht032

    Article  PubMed  Google Scholar 

  68. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391(1):73–77

    Article  CAS  PubMed  Google Scholar 

  69. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773

    Article  PubMed  PubMed Central  Google Scholar 

  70. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506

    Article  PubMed  Google Scholar 

  71. Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N (2010) Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56(7):1183–1185

    Article  CAS  PubMed  Google Scholar 

  72. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666

    Article  PubMed  Google Scholar 

  73. Cheng C, Wang Q, You W, Chen M, Xia J (2014) MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One 9(2):e88566

    Article  PubMed  PubMed Central  Google Scholar 

  74. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC, Thum T (2011) Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol 51(5):872–875

    Article  CAS  PubMed  Google Scholar 

  75. Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Münzel T, Schnabel RB, Blankenberg S, Zeller T (2016 Jun 29) Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J pii:ehw250

    Article  Google Scholar 

  76. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638. doi:10.1038/nrd4359

    Article  CAS  PubMed  Google Scholar 

  77. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  78. van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel TM, Zeuzem S, Lawitz EJ, Rodriguez-Torres M, Kupcova V, Wiercinska-Drapalo A, Hodges MR, Janssen HL, Reesink HW (2014) Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 111:53–59

    Article  PubMed  Google Scholar 

  79. Duell PB, Santos RD, Kirwan BA, Witztum JL, Tsimikas S, Kastelein JJ (2016) Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol 10(4):1011–1021. doi:10.1016/j.jacl.2016.04.013

    Article  PubMed  Google Scholar 

  80. Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M (2013) Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol 62(23):2178–2184. doi:10.1016/j.jacc.2013.07.081

    Article  CAS  PubMed  Google Scholar 

  81. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Kaimal V, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, Moore KJ (2011) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478(7369):404–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu QF, Baloch E, van Rooij E, Zeiher AM, Kupatt C, Dimmeler S (2013) Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128(10):1066–1075

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cavarretta MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cavarretta, E., Lupieri, A., Frati, G. (2017). microRNAs, Angiogenesis and Atherosclerosis. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_17

Download citation

Publish with us

Policies and ethics