Skip to main content

Cell-Based Therapy in Ischemic Heart Disease

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Despite continuous advances in primary prevention and secondary management of arteriosclerotic disease, ischemic cardiovascular disease constitute an increasing socioeconomic burden. A solid body of evidence has previously indicated a regenerative capacity of stem and progenitor cell-based therapy in preclinical and early-phase clinical studies. Clinical application of stem and progenitor cells in ischemic heart disease have included patients with coronary artery disease after revascularized acute myocardial infarction, ischemic cardiomyopathy, or refractory angina. Larger scale clinical studies subsequently generated mixed data partly due to differences in study design and employed techniques. While the therapeutic application of different cell populations appears safe, therapeutic efficacy of stem and progenitor cells needs yet to be proven at a larger scale in properly designed randomized-controlled trials. Vast efforts have been undertaken to overcome practical limitations and conceptual challenges that were encountered in praxis over time. Multiple strategies such as supportive use of biomaterials, combination of different cell sources, genetic modification of cells prior to application, and addition of factors turned out to be promising overly in the preclinical evaluation To optimize and fully leverage the regenerative potential of cell-based therapies further aspects including identification of a potentially ideal cell linage as well as timing, repetition and dosing of cell delivery need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADRC:

Adipose derived regenerative cell

AMI:

Acute myocardial infarction

BMC:

Bone marrow-derived mononuclear cell

CAD:

Coronary artery disease

CSC:

Cardiac stem cell

EPC:

Endothelial progenitor cell

ESC:

Embryonic stem cell

GM-CSF:

Granulocyte-macrophage colony stimulating factor

HPSC:

Hematopoietic stem cell

ICM:

Ischemic cardiomyopathy

iPS:

Inducible pluripotent stem cell

MSC:

Mesenchymal stem cell

SM:

Skeletal myoblast

References

  1. Mozaffarian D et al (2015) Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 131(4):e29–322

    Article  PubMed  Google Scholar 

  2. Fang J et al (2008) Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol 52(6):428–434

    Article  PubMed  Google Scholar 

  3. Tongers J, Losordo DW, Landmesser U (2011) Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32(10):1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Menasche P (2011) Cardiac cell therapy: lessons from clinical trials. J Mol Cell Cardiol 50(2):258–265

    Article  CAS  PubMed  Google Scholar 

  5. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942

    Article  CAS  PubMed  Google Scholar 

  6. Kawamoto A et al (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114(20):2163–2169

    Article  PubMed  Google Scholar 

  7. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20

    Article  CAS  PubMed  Google Scholar 

  8. Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  10. Bearzi C et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murry CE et al (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98(11):2512–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor DA et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4(8):929–933

    Article  CAS  PubMed  Google Scholar 

  13. Kofidis T et al (2005) Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 111(19):2486–2493

    Article  CAS  PubMed  Google Scholar 

  14. Rajasingh J et al (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101(9):910–918

    Article  CAS  PubMed  Google Scholar 

  15. Amariglio N et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):e1000029

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao F et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7):1005–1014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  18. Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322(5909):1811–1815

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30–e41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strauer BE et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  21. Zohlnhofer D et al (2008) Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol 51(15):1429–1437

    Article  PubMed  Google Scholar 

  22. Fernandez-Aviles F et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95(7):742–748

    Article  CAS  PubMed  Google Scholar 

  23. Assmus B et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24):3009–3017

    Article  PubMed  Google Scholar 

  24. Schachinger V et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44(8):1690–1699

    Article  PubMed  Google Scholar 

  25. Schachinger V et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  CAS  PubMed  Google Scholar 

  26. Wollert KC et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  27. Janssens S et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  PubMed  Google Scholar 

  28. Lunde K et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209

    Article  CAS  PubMed  Google Scholar 

  29. Traverse JH et al (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308(22):2380–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Traverse JH et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19):2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schachinger V et al (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 27(23):2775–2783

    Article  PubMed  Google Scholar 

  32. Assmus B et al (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3(1):89–96

    Article  PubMed  Google Scholar 

  33. Meyer GP et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10):1287–1294

    Article  PubMed  Google Scholar 

  34. Schaefer A et al (2006) Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur Heart J 27(8):929–935

    Article  PubMed  Google Scholar 

  35. Meyer GP et al (2009) Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J 30(24):2978–2984

    Article  PubMed  Google Scholar 

  36. Cao F et al (2009) Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J 30(16):1986–1994

    Article  PubMed  PubMed Central  Google Scholar 

  37. Santoso T et al (2014) Endomyocardial implantation of autologous bone marrow mononuclear cells in advanced ischemic heart failure: a randomized placebo-controlled trial (END-HF). J Cardiovasc Transl res 7(6):545–552

    Article  PubMed  Google Scholar 

  38. Perin EC et al (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307(16):1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mathiasen AB et al (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36(27):1744–1753

    Article  CAS  PubMed  Google Scholar 

  40. Heldman AW et al (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311(1):62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perin EC et al (2014) Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. Am Heart J 168(1):88–95.e2

    Article  CAS  PubMed  Google Scholar 

  42. Losordo DW et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109(4):428–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Ramshorst J et al (2009) Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301(19):1997–2004

    Article  PubMed  Google Scholar 

  44. Tse HF et al (2007) Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur Heart J 28(24):2998–3005

    Article  PubMed  Google Scholar 

  45. Povsic TJ et al (2013) A phase 3, randomized, double-blinded, active-controlled, unblinded standard of care study assessing the efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina: design of the RENEW study. Am Heart J 165(6):854–861.e2

    Article  CAS  PubMed  Google Scholar 

  46. Jimenez-Quevedo P et al (2014) Selected CD133(+) progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circ Res 115(11):950–960

    Article  CAS  PubMed  Google Scholar 

  47. Rauscher FM et al (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108(4):457–463

    Article  PubMed  Google Scholar 

  48. Hill JM et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  49. Kondo T et al (2004) Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 24(8):1442–1447

    Article  CAS  PubMed  Google Scholar 

  50. Tepper OM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786

    Article  PubMed  Google Scholar 

  51. Vasa M et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7

    Article  CAS  PubMed  Google Scholar 

  52. Sorrentino SA et al (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116(2):163–173

    Article  CAS  PubMed  Google Scholar 

  53. Giannotti G et al (2010) Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension 55(6):1389–1397

    Article  CAS  PubMed  Google Scholar 

  54. Sorrentino SA et al (2010) Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121(1):110–122

    Article  CAS  PubMed  Google Scholar 

  55. Li TS et al (2009) Identification of risk factors related to poor angiogenic potency of bone marrow cells from different patients. Circulation 120(11 Suppl):S255–S261

    Article  PubMed  Google Scholar 

  56. Hofmann M et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Article  PubMed  Google Scholar 

  57. Gnecchi M et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dixon JA et al (2009) Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation 120(11 Suppl):S220–S229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schachinger V et al (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118(14):1425–1432

    Article  PubMed  Google Scholar 

  60. Balsam LB et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673

    Article  CAS  PubMed  Google Scholar 

  61. Zhang M et al (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921

    Article  CAS  PubMed  Google Scholar 

  62. Aicher A et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107(16):2134–2139

    Article  PubMed  Google Scholar 

  63. Brenner W et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45(3):512–518

    CAS  PubMed  Google Scholar 

  64. Dedobbeleer C et al (2009) Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. J Cardiovasc Pharmacol 53(6):480–485

    Article  CAS  PubMed  Google Scholar 

  65. Penn MS, Mangi AA (2008) Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res 102(12):1471–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chavakis E, Koyanagi M, Dimmeler S (2010) Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 121(2):325–335

    Article  PubMed  Google Scholar 

  67. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  CAS  PubMed  Google Scholar 

  68. Davis ME et al (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103(21):8155–8160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.K. and A.M. were supported stipends from the Hannover Biomedical Research School (HBRS) of Hannover Medical School, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Tongers MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, A., Menon, A., Tongers, J. (2017). Cell-Based Therapy in Ischemic Heart Disease. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_15

Download citation

Publish with us

Policies and ethics