Skip to main content

Therapeutic Angiogenesis, Cell Therapy and Peripheral Vascular Disease

  • Chapter
  • First Online:
  • 913 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Peripheral Arterial Disease (PAD) is one of the major complications of systemic atherosclerosis where occlusions along the major arterial pathway that supplies blood to the lower extremities is interrupted and blood flow to the distal limb becomes dependent on the presence, extent, and function of collateral blood vessels. Estimates are PAD is present in ~8.5 million Americans at or over the age of 40 and the two major clinical manifestations of PAD are intermittent claudication (IC) and critical limb ischemia (CLI) (Go et al., Circulation 129(3):e28–e292, 2014). Across the two major clinical manifestations of PAD the types of leg symptoms, amputation rates, and mortality differ greatly (Norgren et al., J Vasc Surg 45(Suppl S):S5–S67, 2007). Medical therapies for PAD subjects are designed to limit complications from systemic but no medical therapies are reliably able to improve blood flow to the ischemic limb. Here we will review how trials of therapeutic angiogenesis using gene or cell therapy have fared to treat PAD.

Sources of Funding 

B.H.A is supported by 1R01 HL116455, 1R01 HL121635, and 2R01 HL101200.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Go AS et al (2014) Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    Article  PubMed  Google Scholar 

  2. Norgren L et al (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45(Suppl S):S5–S67

    Article  PubMed  Google Scholar 

  3. Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10(7):387–396

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  CAS  PubMed  Google Scholar 

  6. Robbins JL et al (1985) Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol 111(1):81–86

    Article  Google Scholar 

  7. Duscha BD et al (2011) Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol 31(11):2742–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strohman RC (1992) Gene therapy. Nature 355(6362):667

    Article  CAS  PubMed  Google Scholar 

  9. Katwal AB et al (2013) Adeno-associated virus serotype 9 efficiently targets ischemic skeletal muscle following systemic delivery. Gene Ther 20(9):930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Isner JM et al (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348(9024):370–374

    Article  CAS  PubMed  Google Scholar 

  11. Baumgartner I et al (1998) Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97(12):1114–1123

    Article  CAS  PubMed  Google Scholar 

  12. Simovic D et al (2001) Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 58(5):761–768

    Article  CAS  PubMed  Google Scholar 

  13. Kim HJ et al (2004) Vascular endothelial growth factor-induced angiogenic gene therapy in patients with peripheral artery disease. Exp Mol Med 36(4):336–344

    Article  CAS  PubMed  Google Scholar 

  14. Makinen K et al (2002) Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 6(1):127–133

    Article  CAS  PubMed  Google Scholar 

  15. Kusumanto YH et al (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691

    Article  CAS  PubMed  Google Scholar 

  16. Comerota AJ et al (2002) Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 35(5):930–936

    Article  PubMed  Google Scholar 

  17. Nikol S et al (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16(5):972–978

    Article  CAS  Google Scholar 

  18. Belch J et al (2011) Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377(9781):1929–1937

    Article  CAS  PubMed  Google Scholar 

  19. Morishita R et al (2004) Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 44(2):203–209

    Article  CAS  PubMed  Google Scholar 

  20. Powell RJ et al (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118(1):58–65

    Article  CAS  PubMed  Google Scholar 

  21. Powell RJ et al (2010) Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 52(6):1525–1530

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shigematsu H et al (2010) Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther 17(9):1152–1161

    Article  CAS  PubMed  Google Scholar 

  23. Rajagopalan S et al (2007) Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 115(10):1234–1243

    CAS  PubMed  Google Scholar 

  24. Senger DR et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985

    Article  CAS  PubMed  Google Scholar 

  25. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25

    Article  CAS  PubMed  Google Scholar 

  26. Ferrara N, Keyt B (1997) Vascular endothelial growth factor: basic biology and clinical implications. EXS 79:209–232

    CAS  PubMed  Google Scholar 

  27. Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  CAS  PubMed  Google Scholar 

  28. Fong GH et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70

    Article  CAS  PubMed  Google Scholar 

  29. Shalaby F et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66

    Article  CAS  PubMed  Google Scholar 

  30. Taipale J et al (1999) Vascular endothelial growth factor receptor-3. Curr Top Microbiol Immunol 237:85–96

    CAS  PubMed  Google Scholar 

  31. Dokun AO, Annex BH (2011) The VEGF165b "ICE-o-form" puts a chill on the VEGF story. Circ Res 109(3):246–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohler ER 3rd et al (2003) Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med 8(1):9–13

    Article  PubMed  Google Scholar 

  33. Hopkins SP et al (1998) Controlled delivery of vascular endothelial growth factor promotes neovascularization and maintains limb function in a rabbit model of ischemia. J Vasc Surg 27(5):886–894; discussion 895.

    Google Scholar 

  34. Li Y et al (2007) In mice with type 2 diabetes, a vascular endothelial growth factor (VEGF)-activating transcription factor modulates VEGF signaling and induces therapeutic angiogenesis after hindlimb ischemia. Diabetes 56(3):656–665

    Article  CAS  PubMed  Google Scholar 

  35. Baumgartner I, Isner JM (1998) Stimulation of peripheral angiogenesis by vascular endothelial growth factor (VEGF). Vasa 27(4):201–206

    CAS  PubMed  Google Scholar 

  36. Presta M et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178

    Article  CAS  PubMed  Google Scholar 

  37. Nabel EG et al (1993) Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 362(6423):844–846

    Article  CAS  PubMed  Google Scholar 

  38. Williams D, Davenport K, Tan Y (2003) Angiogenesis with recombinant fibroblast growth factor-2 for claudication. Lancet 361(9353):256; author reply 256.

    Google Scholar 

  39. Bussolino F et al (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119(3):629–641

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura Y et al (1996) Hepatocyte growth factor is a novel member of the endothelium-specific growth factors: additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor. J Hypertens 14(9):1067–1072

    Article  CAS  PubMed  Google Scholar 

  41. Wang GL et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237

    Article  CAS  PubMed  Google Scholar 

  43. Jaakkola P et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Article  CAS  PubMed  Google Scholar 

  44. Creager MA et al (2011) Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation 124(16):1765–1773

    Article  CAS  PubMed  Google Scholar 

  45. Tateishi-Yuyama E et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435

    Article  PubMed  Google Scholar 

  46. Nizankowski R et al (2005) The treatment of advanced chronic lower limb ischaemia with marrow stem cell autotransplantation. Kardiol Pol 63(4):351–360; discussion 361.

    Google Scholar 

  47. Kajiguchi M et al (2007) Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J 71(2):196–201

    Article  PubMed  Google Scholar 

  48. Saigawa T et al (2004) Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J 68(12):1189–1193

    Article  PubMed  Google Scholar 

  49. Huang P et al (2005) Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28(9):2155–2160

    Article  PubMed  Google Scholar 

  50. Kawamura A et al (2006) Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs 9(4):226–233

    Article  PubMed  Google Scholar 

  51. Ishida A et al (2005) Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia. Circ J 69(10):1260–1265

    Article  PubMed  Google Scholar 

  52. Lenk K et al (2005) Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J 26(18):1903–1909

    Article  PubMed  Google Scholar 

  53. Miyamoto M et al (2004) Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant 13(4):429–437

    Article  PubMed  Google Scholar 

  54. Powell RJ et al (2011) Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg 54(4):1032–1041

    Article  PubMed  Google Scholar 

  55. Benoit E et al (2011) The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med 9:165

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lu D et al (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36

    Article  PubMed  Google Scholar 

  57. Powell RJ et al (2012) Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther 20(6):1280–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Idei N et al (2011) Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv 4(1):15–25

    Article  PubMed  Google Scholar 

  59. Iafrati MD et al (2011) Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg 54(6):1650–1658

    Article  PubMed  Google Scholar 

  60. Walter DH et al (2011) Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv 4(1):26–37

    Article  PubMed  Google Scholar 

  61. Murphy MP et al (2011) Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg 53(6):1565–1574.e1

    Article  PubMed  PubMed Central  Google Scholar 

  62. Losordo DW et al (2012) A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv 5(6):821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arai M et al (2006) Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circ J 70(9):1093–1098

    Article  CAS  PubMed  Google Scholar 

  64. van Royen N et al (2005) START trial: a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease. Circulation 112(7):1040–1046

    Article  PubMed  Google Scholar 

  65. Bartsch T et al (2007) Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study). Clin Res Cardiol 96(12):891–899

    Article  CAS  PubMed  Google Scholar 

  66. Cobellis G et al (2008) Long-term effects of repeated autologous transplantation of bone marrow cells in patients affected by peripheral arterial disease. Bone Marrow Transplant 42(10):667–672

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Annex MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Annex, B.H. (2017). Therapeutic Angiogenesis, Cell Therapy and Peripheral Vascular Disease. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_14

Download citation

Publish with us

Policies and ethics