Skip to main content

Colloid Nanoparticles and Carbon Nanotubes. What Can We Learn About Their Biomedical Application From Molecular Dynamics Simulations?

  • Conference paper
  • First Online:
Modern Problems of Molecular Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 197))

  • 672 Accesses

Abstract

The behavior of a multi-walled carbon nanotube functionalized by magnetic nanoparticles through triethylene glycol chains is studied using molecular dynamics simulations. Particular attention is paid to the effect of magnetic anisotropy of nanoparticles which significantly affects the behaviour of the system under external magnetic field. The magnetization reversal process is coupled with the standard atomistic molecular dynamics equations of motion by utilizing the Neel-Brown model. The overdamped Langevin dynamics is used for the description of the inertialess magnetization displacements. The key results obtained in this study concern: an energetic profile of the system accompanying transition of a magnetic nanoparticle from the vicinity of the nanotube tip to its sidewall, the range of the magnetic anisotropy constant in which the system performs structural rearrangements, and the release dynamics of cisplatin from the interior of the nanocontainer. Another analyzed architecture uses small gold nanoparticles linked with the nanotube by hydrazone bond containing fragments. Because hydrazone bonds hydrolyze at slightly acidic pH those gold nanoparticles become chemically disconnected from the CNT at such conditions. Thus, the previously encapsulated cisplatin molecules in the CNT inner cavity can be released only at acidic pH. Analysis of the above process at the molecular scale leads to the conclusion that the feasibility of such a mechanism can be canceled by strong dispersion forces existing between gold nanoparticles and CNT. However, the presence of cisplatin in the inner cavity of the carbon nanotube strongly reduces the range of dispersion interactions. The determined properties of the studied systems strongly suggest their application in the area of nanomedicine as drug targeting and delivery nanovehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008). https://doi.org/10.1021/cr068445e

    Article  Google Scholar 

  2. M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today. 2, 22–32 (2007). https://doi.org/10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  3. K.A. Brown, C.C. Vassiliou, D. Issadore, J. Berezovsky, M.J. Cima, R.M. Westervelt, Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation. J. Magn. Magn. Mater. 322, 3122–3126 (2010). https://doi.org/10.1016/j.jmmm.2010.05.044

    Article  ADS  Google Scholar 

  4. B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964–2015 (2013). https://doi.org/10.1016/j.addr.2013.08.005

    Article  Google Scholar 

  5. H. Huang, Q. Yuan, J.S. Shah, R.D.K. Misra, A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv. Drug Deliv. Rev. 63, 1332–1339 (2011). https://doi.org/10.1016/j.addr.2011.04.001

    Article  Google Scholar 

  6. D. Iannazzo, A. Piperno, A. Pistone, G. Grassi, S. Galvagno, Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr. Med. Chem. 20, 1333–1354 (2013). https://doi.org/10.2174/0929867311320110001

    Article  Google Scholar 

  7. C.L. Lay, J. Liu, Y. Liu, Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 8, 561–566 (2011). https://doi.org/10.1586/erd.11.34

    Article  Google Scholar 

  8. J. Li, S.Q. Yap, C.F. Chin, Q. Tian, S.L. Yoong, G. Pastorin, W.H. Ang, Platinum (iv) prodrugs entrapped within multiwalled carbon nanotubes: selective release by chemical reduction and hydrophobicity reversal. Chem. Sci. 3, 2083 (2012). https://doi.org/10.1039/c2sc01086k

    Article  Google Scholar 

  9. C. Tripisciano, M.H. Rümmeli, X. Chen, E. Borowiak-Palen, Multi-wall carbon nanotubes—a vehicle for targeted Irinotecan drug delivery. Phys. Status Solidi B 247, 2673–2677 (2010). https://doi.org/10.1002/pssb.201000143

    Article  ADS  Google Scholar 

  10. H. Maeda, Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Controlled Release 164, 138–144 (2012). https://doi.org/10.1016/j.jconrel.2012.04.038

    Article  Google Scholar 

  11. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem. Commun. Camb. Engl. 571–577 (2005). https://doi.org/10.1039/b410943k

  12. N.W.S. Kam, Z. Liu, H. Dai, Carbon nanotubes as intracellular transporters for proteins and dna: an investigation of the uptake mechanism and pathway. Angew. Chem. 118, 591–595 (2006). https://doi.org/10.1002/ange.200503389

    Article  Google Scholar 

  13. Z. Ali Mohammadi, S.F. Aghamiri, A. Zarrabi, M.R. Talaie, A comparative study on non-covalent functionalization of carbon nanotubes by chitosan and its derivatives for delivery of doxorubicin. Chem. Phys. Lett. 642, 22–28 (2015). https://doi.org/10.1016/j.cplett.2015.10.075

    Article  ADS  Google Scholar 

  14. M. Bassiouk, V.A. Basiuk, E.V. Basiuk, E. Álvarez-Zauco, M. Martínez-Herrera, A. Rojas-Aguilar, I. Puente-Lee, Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Appl. Surf. Sci. 275, 168–177 (2013). https://doi.org/10.1016/j.apsusc.2012.12.167

    Article  ADS  Google Scholar 

  15. H. Ismaili, F. Lagugné-Labarthet, M.S. Workentin, Covalently assembled gold nanoparticle-carbon nanotube hybrids via a photoinitiated carbene addition reaction. Chem. Mater. 23, 1519–1525 (2011). https://doi.org/10.1021/cm103284g

    Article  Google Scholar 

  16. Y.C. Jung, H. Muramatsu, T. Hayashi, J.H. Kim, Y.A. Kim, M. Endo, M.S. Dresselhaus, Covalent attachment of aromatic diisocyanate to the sidewalls of single- and double-walled carbon nanotubes. Eur. J. Inorg. Chem. 2010, 4305–4308 (2010). https://doi.org/10.1002/ejic.201000507

    Article  Google Scholar 

  17. A.R. Hilgenbrink, P.S. Low, Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci. 94, 2135–2146 (2005). https://doi.org/10.1002/jps.20457

    Article  Google Scholar 

  18. R. Li, R. Wu, L. Zhao, M. Wu, L. Yang, H. Zou, P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. acs nano 4, 1399–1408 (2010). https://doi.org/10.1021/nn9011225

    Article  Google Scholar 

  19. T. Panczyk, A. Jagusiak, G. Pastorin, W.H. Ang, J. Narkiewicz-Michalek, Molecular dynamics study of cisplatin release from carbon nanotubes capped by magnetic nanoparticles. J. Phys. Chem. C 117, 17327–17336 (2013). https://doi.org/10.1021/jp405593u

    Article  Google Scholar 

  20. F. Yang, C. Jin, D. Yang, Y. Jiang, J. Li, Y. Di, J. Hu, C. Wang, Q. Ni, D. Fu, Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer 47, 1873–1882 (2011). https://doi.org/10.1016/j.ejca.2011.03.018

    Article  Google Scholar 

  21. T. Panczyk, T.P. Warzocha, Monte carlo study of the properties of a carbon nanotube functionalized by magnetic nanoparticles. J. Phys. Chem. C 113, 19155–19160 (2009). https://doi.org/10.1021/jp9062065

    Article  Google Scholar 

  22. T. Panczyk, M. Drach, P. Szabelski, A. Jagusiak, Magnetic anisotropy effects on the behavior of a carbon nanotube functionalized by magnetic nanoparticles under external magnetic fields. J. Phys. Chem. C 116, 26091–26101 (2012). https://doi.org/10.1021/jp3101442

    Article  Google Scholar 

  23. T. Panczyk, P. Wolski, L. Konczak, J. Narkiewicz-Michalek, Sidewall functionalization of carbon nanotubes as a method of controlling structural transformations of the magnetically triggered nanocontainer: a molecular dynamics study. J. Phys. Chem. C 119, 8373–8381 (2015). https://doi.org/10.1021/acs.jpcc.5b01155

    Article  Google Scholar 

  24. G. Pastorin, J. Li, S.L. Yoong, W.J. Goh, B.M.S. Czarny, Z. Yang, K. Poddar, M. Dykas, A. Patra, T. Thirumalai Venkatesan, C. Lee, T. Panczyk, In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages. Int. J. Nanomedicine. 7425 (2015). https://doi.org/10.2147/IJN.S93810

  25. Z. Ji, G. Lin, Q. Lu, L. Meng, X. Shen, L. Dong, C. Fu, X. Zhang, Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci. 365, 143–149 (2012). https://doi.org/10.1016/j.jcis.2011.09.013

    Article  ADS  Google Scholar 

  26. N.M. Dinan, F. Atyabi, M.-R. Rouini, M. Amini, A.-A. Golabchifar, R. Dinarvand, Doxorubicin loaded folate-targeted carbon nanotubes: Preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver. Mater. Sci. Eng., C 39, 47–55 (2014). https://doi.org/10.1016/j.msec.2014.01.055

    Article  Google Scholar 

  27. B. Anbarasan, S.V. Babu, K. Elango, B. Shriya, S. Ramaprabhu, pH responsive release of doxorubicin to the cancer cells by functionalized multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 15, 4799–4805 (2015). https://doi.org/10.1166/jnn.2015.9817

    Article  Google Scholar 

  28. J. Kalia, R.T. Raines, Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47, 7523–7526 (2008). https://doi.org/10.1002/anie.200802651

    Article  Google Scholar 

  29. T. Panczyk, L. Konczak, J. Narkiewicz-Michalek, G. Pastorin, Corking and uncorking carbon nanotubes by metal nanoparticles bearing ph-cleavable hydrazone linkers. theoretical analysis based on molecular dynamics simulations. J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b08383

    Google Scholar 

  30. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  31. T. Panczyk, P. Szabelski, M. Drach, Implicit solvent model for effective molecular dynamics simulations of systems composed of colloid nanoparticles and carbon nanotubes. J. Colloid Interface Sci. 383, 55–62 (2012). https://doi.org/10.1016/j.jcis.2012.06.035

    Article  ADS  Google Scholar 

  32. M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T.O. Ely, C. Amiens, B. Chaudret, Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B. 57, 2925–2935 (1998). https://doi.org/10.1103/PhysRevB.57.2925

    Article  ADS  Google Scholar 

  33. A. Gavrin, C.L. Chien, Fabrication and magnetic properties of granular alloys. J. Appl. Phys. 67, 938 (1990). https://doi.org/10.1063/1.346100

    Article  ADS  Google Scholar 

  34. B.J. Hickey, M.A. Howson, D. Greig, N. Wiser, Enhanced magnetic anisotropy energy density for superparamagnetic particles of cobalt. Phys. Rev. B. 53, 32–33 (1996). https://doi.org/10.1103/PhysRevB.53.32

    Article  ADS  Google Scholar 

  35. S. Gubin, Y. Spichkin, Y. Koksharov, G.Y. Yurkov, A. Kozinkin, T. Nedoseikina, M. Korobov, A. Tishin, Magnetic and structural properties of Co nanoparticles in a polymeric matrix. J. Magn. Magn. Mater. 265, 234–242 (2003). https://doi.org/10.1016/S0304-8853(03)00271-3

    Article  ADS  Google Scholar 

  36. C.H. Chen, M.S. Walmer, M.H. Walmer, W. Gong, B.-M. Ma, The relationship of thermal expansion to magnetocrystalline anisotropy, spontaneous magnetization, and T[sub c] for permanent magnets. J. Appl. Phys. 85, 5669 (1999). https://doi.org/10.1063/1.369835

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Centre (NCN). Grant no. UMO-2012/07/E/ST4/00763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Panczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panczyk, T., Konczak, L., Wolski, P. (2018). Colloid Nanoparticles and Carbon Nanotubes. What Can We Learn About Their Biomedical Application From Molecular Dynamics Simulations?. In: Bulavin, L., Chalyi, A. (eds) Modern Problems of Molecular Physics. Springer Proceedings in Physics, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-61109-9_2

Download citation

Publish with us

Policies and ethics