Skip to main content

The Polycluster Theory for the Structure of Glasses: Evidence from Low Temperature Physics

  • Conference paper
  • First Online:
Book cover Modern Problems of Molecular Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 197))

  • 685 Accesses

Abstract

The problems of the intermediate-range atomic structure of glasses and of the mechanism for the glass transition are approached from the low-temperature end in terms of a scenario for the atomic organization that justifies the use of an extended tunneling model. The latter is crucial for the explanation of the magnetic and compositional effects discovered in non-metallic glasses in the Kelvin and milli-Kelvin temperature range. The model relies on the existence of multi-welled local potentials for the effective tunneling particles that are a manifestation of a non-homogeneous atomic structure deriving from the established dynamical heterogeneities that characterize the supercooled liquid state. It is shown that the extended tunneling model can successfully explain a range of experiments at low temperatures, but the proposed non-homogeneous atomic structure scenario is then tested in the light of available high resolution electron microscopy imaging of the structure of some glasses and of the behaviour near the glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Jug, Theory of the thermal magnetocapacitance of multi-component silicate glasses at low temperature. Phil. Mag. 84(33), 3599–3615 (2004)

    Article  ADS  Google Scholar 

  2. W.A. Phillips (ed.), Amorphous Solids: Low Temperature Properties (Springer Verlag, Berlin, 1981)

    Google Scholar 

  3. P. Esquinazi (ed.), Tunneling Systems in Amorphous and Crystalline Solids (Springer, Berlin, 1998)

    Google Scholar 

  4. W.H. Zachariasen, The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932); ibid.: The vitreous state. J. Chem. Phys. 3, 162–163 (1935)

    Google Scholar 

  5. B.E. Warren, The diffraction of X-rays in glass. Phys. Rev. 45, 657–661 (1934)

    Article  ADS  Google Scholar 

  6. W.M. MacDonald, A.C. Anderson, J. Schröder, Low-temperature behavior of potassium and sodium silicate glasses. Phys. Rev. B 31, 1090–1101 (1985)

    Article  ADS  Google Scholar 

  7. G. Jug, M. Paliienko, Evidence for a two-component tunnelling mechanism in the multicomponent glasses at low temperatures. Europhys. Lett. 90, 36002 (2010)

    Article  ADS  Google Scholar 

  8. C. Enss, Anomalous behavior of insulating glasses at ultra-low temperatures. Adv. Solid State Phys. 42, 335–346 (2002)

    Article  Google Scholar 

  9. P. Strehlow, M. Wohlfahrt, A.G.M. Jansen, R. Haueisen, G. Weiss, C. Enss, S. Hunklinger, Magnetic field dependent tunneling in glasses. Phys. Rev. Lett. 84, 1938–1941 (2000)

    Article  ADS  Google Scholar 

  10. M. Wohlfahrt, P. Strehlow, C. Enss, S. Hunklinger, Magnetic-field effects in non-magnetic glasses. Europhys. Lett. 56, 690–694 (2001); M. Wohlfahrt, Ph.D. Thesis (Heidelberg 2001), www.ub.uni-heidelberg.de/archiv/1587

  11. P. Nagel, A. Fleischmann, S. Hunklinger, C. Enss, Novel isotope effects observed in polarization echo experiments. Phys. Rev. Lett. 92, 245511 (2004)

    Google Scholar 

  12. A.A. Lebedev, O Polimorfizme i Otzhige Stekla. Trud’i Gos. Opt. Inst. 2, 1–20 (1921) (in Russian); ibid., Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk, Ser. Fiz. 3, 381 (1937)

    Google Scholar 

  13. J.T. Randall, H.P. Rooksby, B.S. Cooper, The diffraction of X-rays by vitreous solids and its bearing on their constitution. Nature 125, 438 (1930); ibid: X-ray diffraction and the structure of vitreous solids. I. Z. Kristallogr. 75, 196–214 (1930)

    Google Scholar 

  14. E.A. Porai-Koshits, Genesis of concepts on structure of inorganic glasses. J. Non-cryst. Sol. 123, 1–13 (1990)

    Article  ADS  Google Scholar 

  15. A.C. Wright, Crystalline-like ordering in melt-quenched network glasses? J. Non-cryst. Solids 401, 4–26 (2014); ibid.: The great crystallite versus random network controversy: a personal perspective. Int. J. Appl. Glass Sci. 5, 31–56 (2014)

    Google Scholar 

  16. A.S. Bakai, The polycluster concept of amorphous solids, in Glassy Metals III, H. Beck and H. -I. Günterodt (eds.), Topics in Applied Physics, vol. 72, 209–255 (Springer, Berlin, 1994)

    Google Scholar 

  17. A.S. Bakai, Poliklastern’ie Amorfn’ie Tela, Khar’kov “Synteks” (Khar’kov, Ukraine, 2013). (in Russian)

    Google Scholar 

  18. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965)

    Article  ADS  Google Scholar 

  19. L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011)

    Article  ADS  Google Scholar 

  20. C.A. Angell, Perspective on the glass transition. J. Phys. Cem. Solids 49, 863–871 (1988)

    Article  ADS  Google Scholar 

  21. V. Lubchenko, P.G. Wolynes, Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007)

    Article  ADS  Google Scholar 

  22. S.L. Simon, G.B. McKenna, Experimental evidence against the existence of an ideal glass transition. J. Non-Cryst. Solids 355, 672–675 (2009)

    Article  ADS  Google Scholar 

  23. G. Hägg, The vitreous state. J. Chem. Phys. 3, 284–349 (2016)

    Google Scholar 

  24. U. Satoshi, H. Koibuchi, Finsler geometry modeling of phase separation in multi-component membranes. Polymers 8, 284 (2016)

    Article  Google Scholar 

  25. J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, P.M. Voyles, Nanoscale structure and structural relaxation in \(\text{ Zr }_50\text{ Cu }_45\text{ Al }_5\) bulk metallic glass. Phys. Rev. Lett. 108, 195505 (2012)

    Article  ADS  Google Scholar 

  26. M.M.J. Treacy, K.B. Borisenko, The local structure of amorphous silicon. Science 335, 950–953 (2012)

    Article  ADS  Google Scholar 

  27. J.C. Phillips, Realization of a Zachariasen glass. Solid State Comm. 47, 203–206 (1983)

    Article  ADS  Google Scholar 

  28. M.M. Hurley, P. Harrowell, Kinetic structure of a two-dimensional liquid. Phys. Rev. E 52, 1694–1698 (1995)

    Article  ADS  Google Scholar 

  29. H. Sillescu, Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108 (1999)

    Article  ADS  Google Scholar 

  30. M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000)

    Article  ADS  Google Scholar 

  31. K. Vollmayr-Lee, A. Zippelius, Heterogeneities in the glassy state. Phys. Rev. B 72, 041507 (2005); K. Vollmayr-Lee, W. Kob, K. Binder, A. Zippelius, Dynamical heterogeneities below the glass transition. J. Chem. Phys. 116, 5158–5166 (2002)

    Google Scholar 

  32. C. Donati, S.C. Glotzer, P.H. Poole, W. Kob, S. Plimpton, Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999)

    Article  ADS  Google Scholar 

  33. P.-G. de Gennes, A simple picture for structural glasses. C. R. Phys. 3, 1263–1268 (2002)

    Article  ADS  Google Scholar 

  34. H.P. Baltes, A cellular model for the specific heat of amorphous solids at low temperatures. Solid State Commun. 13, 225–228 (1973)

    Article  ADS  Google Scholar 

  35. W.A. Phillips, Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987)

    Article  ADS  Google Scholar 

  36. J.A. Sussmann, Electric dipoles due to trapped electrons. Proc. Phys. Soc. 79, 758–774 (1962). (London)

    Article  ADS  MATH  Google Scholar 

  37. G. Jug, M. Paliienko, Multilevel tunneling systems and fractal clusters in the low-temperature mixed alkali-silicate glasses. Sci. World J. 2013, 1–20 (2013)

    Article  Google Scholar 

  38. G. Jug, Multiple-well tunneling model for the magnetic-field effect in ultracold glasses. Phys. Rev. B 79, 180201 (2009)

    Article  ADS  Google Scholar 

  39. G. Jug, M. Paliienko, S. Bonfanti, The glassy state magnetically viewed from the frozen end. J. Non-Crys. Solids 401, 66–72 (2014)

    Article  ADS  Google Scholar 

  40. C.C. Yu, A.J. Leggett, Low temperature properties of amorphous materials: through a glass darkly. Comm. Cond. Mat. Phys. 14, 231–251 (1988)

    Google Scholar 

  41. G. Jug, S. Bonfanti, W. Kob, Realistic tunneling systems for the magnetic effects in non-metallic real glasses. Phil. Mag. 96, 648–703 (2016)

    Article  ADS  Google Scholar 

  42. S. Bonfanti, G. Jug, On the paramagnetic impurity concentration of silicate glasses from low-temperature physics. J. Low Temp. Phys. 180, 214–237 (2015)

    Article  ADS  Google Scholar 

  43. L. Siebert, Ph.D. Thesis (Heidelberg University, 2001), www.ub.uni-heidelberg.de/archiv/1601

  44. H.M. Carruzzo, E.R. Grannan, C.C. Yu, Non-equilibrium dielectric behavior in glasses at low temperatures: evidence for interacting defects. Phys. Rev. B 50, 6685–6695 (1994)

    Article  ADS  Google Scholar 

  45. M. Paliienko, Multiple-welled tunnelling systems in glasses at low temperatures. Ph.D. Thesis (Università degli Studi dell’Insubria, 2011), http://insubriaspace.cineca.it/handle/10277/420

  46. F. LeCochec, F. Ladieu, P. Pari, Magnetic field effect on the dielectric constant of glasses: evidence of disorder within tunneling barriers. Phys. Rev. B 66, 064203 (2002)

    Article  ADS  Google Scholar 

  47. B.P. Smolyakov, E.P. Khaimovich, Pis’ma Zh. Eksp. Teor. Fiz. 29, 464 (1979) (in Russian); ibid.: Dynamic processes in dielectric glasses at low temperatures. Sov. Phys. Uspekhi, 25, 102–115 (courtesy A. Borisenko) (1982)

    Google Scholar 

  48. S. Ludwig, P. Nagel, S. Hunklinger, C. Enss, Magnetic field dependent coherent polarization echoes in glasses. J. Low Temp. Phys. 131, 89–111 (2003)

    Article  ADS  Google Scholar 

  49. S. Ludwig, P. Nagel, S. Hunklinger, C. Enss, Direct coupling of magnetic fields to tunneling systems in glasses. Phys. Rev. Lett. 88, 075501 (2002)

    Article  ADS  Google Scholar 

  50. A. Würger, A. Fleischmann, C. Enss, Dephasing of atomic tunneling by nuclear quadrupoles. Phys. Rev. Lett. 89, 237601 (2002)

    Article  ADS  Google Scholar 

  51. J.L. Black, B.I. Halperin, Spectral diffusion, phonon echoes and saturation recovery in glasses at low temperatures. Phys. Rev. B 16, 2879–2895 (1977)

    Article  ADS  Google Scholar 

  52. V.L. Gurevich, M.I. Muradov, D.A. Parshin, Electric dipole echo in glasses. Sov. Phys. JETP 70, 928 (1990)

    Google Scholar 

  53. Y.M. Galperin, V.L. Gurevich, D.A. Parshin, Nonlinear resonant attenuation in glasses and spectral diffusion. Phys. Rev. B 37, 10339–10349 (1988)

    Google Scholar 

  54. C. Enss, S. Ludwig, R. Weis, S. Hunklinger, Decay of spontaneous echoes in glasses. Czechoslovak J. Phys. 46, 2247–2248 (1996)

    Article  ADS  Google Scholar 

  55. D. Simatos, G. Blond, R. Roudaut, D. Champion, J. Perez, A.L. Faivre, Influence of heating and cooling rates on the glass transition temperature and the fragility parameter of sorbitol and fructose as measured by DSC. J. Thermal Anal. 47, 1419–1436 (1996)

    Article  Google Scholar 

  56. J. Buchholz, W. Paul, F. Varnik, K. Binder, Cooling rate dependence of the glass transition temperature of polymer melts: molecular dynamics study. J. Chem. Phys. 117, 7364–7372 (2002)

    Article  ADS  Google Scholar 

  57. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  58. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  59. J. Zarzycki, Proceedings of X International Congress on Glass, No. 12 (Kyoto, Japan, 1974), p. 28

    Google Scholar 

  60. J. Zarzycki, Glasses and the Vitreous State (Cambridge University Press, Cambridge, 1991), p. 172

    Google Scholar 

  61. W. Vogel, Glass Chemistry, 2nd edn. (Springer, Berlin, 1992), p. 74

    Google Scholar 

  62. A. Borisenko, Hole-compensated \(\text{ Fe }^{3+}\) impurities in quartz glasses: a contribution to Subkelvin thermodynamics. J. Phys.: Condens. Matter 19, 416102 (2007)

    Google Scholar 

  63. A. Borisenko, G. Jug, Paramagnetic tunneling systems and their contribution to the polarization echo in glasses. Phys. Rev. Lett. 107, 075501 (2011)

    Article  ADS  Google Scholar 

  64. E. Proutorov, H. Koibuchi, Orientation asymmetric surface model for membranes: Finsler geometry modeling. Axioms 6, 10 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The Author is very grateful to Maksym Paliienko and Silvia Bonfanti for their help with data fitting. He gratefully acknowledges stimulating discussions with A.S. Bakai. Part of this work was carried out whilst visiting the Physics Department of McGill University in Montreal (CA). The Author is grateful to Hong Guo for support and to him, to Martin Grant and Mark Sutton for useful discussions. On-going support from INFN-Pavia through Iniziativa Specifica GEOSYM-QFT is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Jug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jug, G. (2018). The Polycluster Theory for the Structure of Glasses: Evidence from Low Temperature Physics. In: Bulavin, L., Chalyi, A. (eds) Modern Problems of Molecular Physics. Springer Proceedings in Physics, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-61109-9_13

Download citation

Publish with us

Policies and ethics