Skip to main content

Dynamic Anomalies in Confined Supercooled Water and Bulk Fluids

  • Conference paper
  • First Online:
Book cover Modern Problems of Molecular Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 197))

Abstract

This review paper is aimed at studying the problems as follows: (1) the Widom line and its analogues in supercooled and supercritical regions; (2) effects of dimensional crossover (DC) on the critical exponents, effective spatial d eff and fractal d fr dimensionalities; (3) anomalous behavior of the diffusion coefficient D and the shear viscosity coefficient \( \eta \) in bulk fluids and confined supercooled water (CSW) near the critical points; (4) spectra of the light molecular scattering (LMS) and quasi-elastic neutron scattering (QENS) and its possible medical applications. The effective critical exponents as well as the effective spatial d eff and fractal d fr dimensionalities were calculated for confined fluids like CSW. A 3d \( { \leftrightarrow } \) 2d DC between the critical exponents \( \alpha = 0,\beta = 1/8,\delta = 15,\gamma = 7/4,\nu = 1 \) and \( \alpha = 0.110,\beta = 0.3265,\delta = 4.789,\gamma = 1.237,\nu = 0.630 \) for 2d and 3d systems belonging to the Ising-model universality class were taken into account. Anomalies of the diffusion coefficient were examined in bulk water and CSW in wide intervals of the size and thermodynamic variables corresponding to crossover phenomena between the dynamic fluctuation, crossover and regular regions. The transition between dynamic crossover and regular regions in bulk fluids, including bulk water, is illustrated by changes in the diffusion-coefficient dependences on: (a) the size variable—from D ~ L −1.963 to D ~ L −2, (b) the temperature variable—from D ~ (TT c)1.237 to D ~ (TT c), (c) the concentration variable—from D ~ (xx c)3.789 to D ~ (xx c)2, (d) the pressure variable D ~ (pp c)0.791 to D ~ (pp c)0.667. In confined 2d fluids like CSW such a transition between crossover and regular behaviors should be treated as 2d \( { \leftrightarrow } \) 4d crossover phenomena because results of the Landau mean-field theory are valid for d = 4 (with a logarithmic accuracy). A 2d \( \leftrightarrow \) 4d crossover leads to the following changes in dependence of the diffusion coefficient D on: (a) the size variable from D ~ L −1.75 to D ~ L −2, (b) the temperature variable from D ~ (TT c)1.75 to D ~ (TT c), (c) the concentration variable from D ~ (xx c)14 to D ~ (xx c)2, (d) the pressure variable from D ~ (pp c)0.933 to D ~ (pp c)0.667. Near the glass-transition critical point of CSW the shear viscosity has much stronger power-law singularity: \( \eta \sim (T - T_{c} )^{ - 1.81} \sim (x - x_{c} )^{ - 14.48} \sim (p - p_{c} )^{ - 0.965} \) than in the vicinity of the 3d high-temperature critical point: \( \eta \sim (T - T_{c} )^{ - 0.065} \sim (x - x_{c} )^{ - 0.199} \sim (p - p_{c} )^{ - 0.042}. \) An important problem of the violation of the Stokes-Einstein relation (SER) in CSW is discussed. Specific properties of LMS and QENS spectra in confined liquids were studied. It was shown that with increasing the characteristic system’s size L: (1) the widths \( \varGamma_{c} \) of the central Rayleigh line and \( \Delta E(q^{2} ) \) of the QENS peak, being proportional \( L^{ - 2} \), are rapidly decreasing; (2) the width Г MB of Mandelstam-Brillouin components is strongly shortening (broadening) according to Г MB ~ L 3; (3) the frequency shift ΔΩMB of the Mandelstam-Brillouin components is weakly increasing (decreasing) in accordance with ΔΩMB ~ L −0.087; (4) the Landau-Placzek relation is essentially decreasing (increasing) as is seen from I c/2I MB ~ L −1.79. These results create a reliable background to introduce a new additional diagnostic method of early detecting the tumor formation in practical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSW:

Confined supercooled water

LLCP:

Liquid-liquid critical point

LDW:

Low density water

HDW:

High density water

CF:

Correlation function

OZ:

Ornstein-Zernike

DCF:

Direct correlation functions

DC:

Dimensional crossover

D:

Diffusion coefficient

d:

Spatial dimensionality

3d \( \Leftrightarrow \) 2d:

Crossover between 3-dimensional and 2-dimensional systems

\( d_{eff} \) :

Effective spatial dimensionality

\( d_{fr} \) :

Fractal dimensionality

SER:

Stokes-Einstein relation

LMS:

Light molecular scattering

MBC:

Mandelstam-Brillouin components

LPR:

Landau-Placzek relation

HB:

Hydrogen bond

NMR:

Nuclear magnetic resonance

QENS:

Quasi-elastic neutron scattering

References

  1. L.P. Kadanoff, Physica 2, 263 (1966)

    Google Scholar 

  2. M.E. Fisher, in Critical Phenomena, ed. by M.S. Green (Academic Press, New York, 1971)

    Google Scholar 

  3. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Glarendon Press, Oxford, 1971)

    Google Scholar 

  4. E.L. Lakoza, V.M. Sysoev, A.V. Chalyi, JETP 65, 605 (1973)

    Google Scholar 

  5. M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974)

    Article  ADS  Google Scholar 

  6. K.G. Wilson, J. Kogut, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  7. A.Z. Patashinskii, V.L. Pokrovskii, The Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1979)

    Google Scholar 

  8. M.N. Barber, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz (Academic Press, New York, 1983)

    Google Scholar 

  9. M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon & Breach, Philadelphia, 1991)

    Google Scholar 

  10. V. Privman, P.C. Hohenberg, A. Aharony, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz (Academic Press, New York, 1991)

    Google Scholar 

  11. K. Binder, Annu. Rev. Phys. Chem. 43, 33 (1992)

    Article  ADS  Google Scholar 

  12. A.V. Chalyi, A.V. Lebed, Non-homogeneous Liquids Near the Critical Point and the Boundary of Stability and Theory of Percolation in Ceramics (Harwood Academic Publishers, London, 1993)

    Google Scholar 

  13. A.V. Chalyi, J. Mol. Liquids 58, 179 (1993)

    Article  Google Scholar 

  14. A.V. Chalyi, L.M. Chernenko, in Dynamic Phenomena at Interfaces, Surfaces and Membranes, ed. by D. Beysens, N. Baccara, G. Forgacs (Nova Science Publishers, New York, 1993)

    Google Scholar 

  15. A.V. Chalyi, A.N. Vasilev, J. Mol. Liquids 84, 203 (2000)

    Article  Google Scholar 

  16. I. Brovchenko, A. Oleinikova, Handb. Theor. Comput. Nanotechnol. 62, 1 (2005)

    Google Scholar 

  17. M.P. Kozlovskii, The Influence of External Field on Critical Behavior of 3- Dimensional Systems (Galitskij Publisher, Lviv, 2012)

    Google Scholar 

  18. A.V. Chalyi, L.A. Bulavin, V.F. Chekhun, K.A. Chalyy, L.M. Chernenko, A.M. Vasilev, E.V. Zaitseva, G.V. Khrapijchuk, A.V. Severin, M.V. Kovalenko, Condens. Matter Phys. 16, 23008 (2013)

    Article  Google Scholar 

  19. M. Holovko, V. Shmotolokha, T. Patsahan, in Physics of Liquid Matter: Modern Problems, ed. by L. Bulavin, N. Lebovka (Springer, Switzerland, 2015)

    Google Scholar 

  20. A.V. Chalyi, in Physics of Liquid Matter: Modern Problems, ed. by L. Bulavin, N. Lebovka (Springer, Switzerland, 2015)

    Google Scholar 

  21. P. Gallo, K. Amman-Winkler, C.A. Angell, M.A. Anisimov, P. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A.Z. Panagiotopoulos, J. Russo, J.A. Sellberg, H.E. Stanley, H. Tanaka, C. Vega, L. Xu, L.G.M. Pettersson, Chem. Rev. 116, 7463 (2016)

    Article  Google Scholar 

  22. R.J. Speedy, J. Chem. Phys. 86, 982 (1982)

    Article  Google Scholar 

  23. P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992)

    Article  ADS  Google Scholar 

  24. P.H. Poole, F. Sciortino, T. Grande, H.E. Stanley, C.A. Angell, Phys. Rev. Lett. 73, 1632 (1994)

    Article  ADS  Google Scholar 

  25. C.A. Angell, Science 319, 582 (2008)

    Article  Google Scholar 

  26. S. Sastry, P.H. Debenedetti, F. Sciortino, H.E. Stanley, Phys. Rev. E 53, 6144 (1996)

    Article  ADS  Google Scholar 

  27. C.A. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983)

    Article  ADS  Google Scholar 

  28. F. Sciortino, P. Gallo, P. Tartaglia, S.-H. Chen, Phys. Rev. 54, 6331 (1996)

    ADS  Google Scholar 

  29. P.G. Debenedetti, H.E. Stanley, Phys. Today 56, 40 (2003)

    Article  Google Scholar 

  30. P.G. Debenedetti, J. Phys, Condens. Matter 15, R1669 (2003)

    Article  ADS  Google Scholar 

  31. I. Brovchenko, A. Geiger, A. Oleinikova, D. Paschek, Eur. Phys. J. 12, 69 (2003)

    Google Scholar 

  32. K.A. Chalyy, K. Hamano, A.V. Chalyi, J. Mol. Liq. 92, 153 (2001)

    Article  Google Scholar 

  33. D.A. Fuentevilla, M.A. Anisimov, Phys. Rev. Lett. 97, 195702 (2006)

    Article  ADS  Google Scholar 

  34. I. Brovchenko, A. Oleinikova, J. Chem. Phys. 126, 214701 (2007)

    Article  ADS  Google Scholar 

  35. H.E. Stanley, Z. Phys, Chem. 223, 939 (2009)

    Google Scholar 

  36. O. Mishima, J. Chem. Phys. 133, 144503 (2010)

    Article  ADS  Google Scholar 

  37. V. Holten, M.A. Anisimov, Sci. Rep. 2, 713 (2012)

    Article  ADS  Google Scholar 

  38. F.X. Prielmeier, E.W. Lang, R.J. Speedy, H.-D. Lüdemann, Phys. Rev. Lett. 59, 1128 (1987)

    Article  ADS  Google Scholar 

  39. Yu.A. Osipov, B.V. Zheleznyi, N.F. Bondarenko, Zh. Fiz. Khim. 51, 1264 (1977)

    Google Scholar 

  40. W. Koch, V. Dohm, Phys. Rev. E 58, R1179 (1998)

    Article  ADS  Google Scholar 

  41. T.V. Lokotosh, S. Magazu, G. Maisano, N.P. Malomuzh, Phys. Rev. E 62, 3572 (2000)

    Article  ADS  Google Scholar 

  42. P. Kumar, Proc. Natl. Acad. Sci. USA 103, 12955 (2006)

    Article  ADS  Google Scholar 

  43. L. Xu, P. Kumar, S.V. Buldyrev, S.-H. Chen, P.H. Poole, F. Sciortino, H.E. Stanley, Proc. Natl. Acad. Sci. USA 102, 16558 (2005)

    Article  ADS  Google Scholar 

  44. P. Kumar, S.V. Buldyrev, S.R. Becker, P.H. Poole, F.W. Starr, H.E. Stanley, Proc. Natl. Acad. Sci. USA 104, 9575 (2007)

    Article  ADS  Google Scholar 

  45. J.D. Eaves, D.R. Reichman, Proc. Natl. Acad. Sci. USA 106, 15171 (2009)

    Article  ADS  Google Scholar 

  46. A. Dehaoui, B. Issenmann, F. Caupin, Proc. Natl. Acad. Sci. USA 112, 12020 (2015)

    Article  ADS  Google Scholar 

  47. C.A. Angell, J. Shuppert, J.C. Tucker, J. Phys. Chem. 77, 3092 (1973)

    Article  Google Scholar 

  48. R.J. Speedy, C.A. Angell, J. Chem. Phys. 65, 851 (1976)

    Article  ADS  Google Scholar 

  49. R. Kurita, H. Tanaka, Science 306, 845 (2004)

    Article  ADS  Google Scholar 

  50. S. Sen, S. Gaudio, B.G. Aitken, C.E. Lesher, Phys. Rev. Lett. 97, 025504 (2006)

    Google Scholar 

  51. M.H. Bhat, V. Molionero, E. Soignard, V.C. Solomon, S. Sastry, J.L. Yarger, C.A. Angell, Nature 448, 787 (2007)

    Article  ADS  Google Scholar 

  52. K. Stokely, M.G. Mazza, H.E. Stanley, G. Franzese, Proc. Natl. Acad. Sci. USA 107, 1301 (2010)

    Article  ADS  Google Scholar 

  53. P. Kumar, S. Han, H.E. Stanley, J. Phys.: Condens. Matter 21, 504108 (2009)

    Google Scholar 

  54. B.J. Widom, in Phase Transitions and Critical Phenomena, ed. by C. Domb, M.S. Green (Academic Press, Waltham, 1972)

    Google Scholar 

  55. J. Frenkel, Kinetic Theory of Liquids (Oxford University Press, Oxford, 1947)

    MATH  Google Scholar 

  56. M.E. Fisher, B.J. Widom, J. Chem. Phys. 50, 3759 (1969)

    Article  ADS  Google Scholar 

  57. Water Wisdom and Widom (Boston University Research Briefs, 2005)

    Google Scholar 

  58. A.D. Alekhin, N.P. Krupskii, A.V. Chalyi, JETP 63, 1417 (1972)

    Google Scholar 

  59. G.G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, Nat. Phys. 6, 503 (2010)

    Article  Google Scholar 

  60. M.A. Anisimov, V.F. Agayan, P.I. Collings, Phys. Rev. E 57, 582 (1998)

    Article  ADS  Google Scholar 

  61. D.A. Fuentevilla, M.A. Anisimov, Phys. Rev. Lett. 98, 149904 (2007)

    Article  ADS  Google Scholar 

  62. C.E. Bertrand, M.A. Anisimov, J. Phys. Chem. B 115, 14099 (2011)

    Article  Google Scholar 

  63. V. Holten, C.E. Bertrand, M.A. Anisimov, J.V. Sengers, J. Chem. Phys. 136, 094507 (2012)

    Article  ADS  Google Scholar 

  64. J. Luo, L. Xu, E. Lascaris, H.E. Stanley, S.V. Buldyrev, Phys. Rev. Lett. 112, 135701 (2014)

    Article  ADS  Google Scholar 

  65. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Publication, Wiley, 1975)

    MATH  Google Scholar 

  66. I.R. Yukhnovskyi, M.F. Holovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kyiv, 1980)

    Google Scholar 

  67. I.R. Yukhnovskii, M.P. Kozlovskii, I.V. Pelyuk, Microscopic Theory of Phase Transitions in 3-Dimensional Systems (Evrosvit, Lviv, 2001)

    Google Scholar 

  68. M.E. Fisher, J. Math. Phys. 5, 944 (1964)

    Article  ADS  Google Scholar 

  69. E.L. Lakoza, A.V. Chalyi, JETP 40, 521 (1974)

    ADS  Google Scholar 

  70. D.W. Oxtoby, W.M. Gelbart, J. Chem. Phys. 60, 3359 (1974)

    Article  ADS  Google Scholar 

  71. V.L. Kuzmin, Opt. Spectrosk. 38, 423 (1975)

    ADS  Google Scholar 

  72. L.V. Adzhemyan, L. Ts, L.A. Adzhemyan, V.P.R. Zubkov, JETP 51, 530 (1981)

    ADS  Google Scholar 

  73. E.L. Lakoza, A.V. Chalyi, Usp. Fiz. Nauk 140, 393 (1983); Sov. Phys. Usp. 26, 573 (1983)

    Google Scholar 

  74. V.L. Kuzmin, Phys. Rep. 123, 365 (1985)

    Article  ADS  Google Scholar 

  75. L.A. Zubkov, V.P. Romanov, Usp. Phys. Nauk 14, 615 (1988); Sov. Phys. Usp. 31, 328 (1988)

    Google Scholar 

  76. M.O. Kimball, K.P. Mooney, F.M. Gasparini, Phys. Rev. Lett. 92, 15301 (2004)

    Article  Google Scholar 

  77. E.K. Riedel, F.J. Wegner, Phys. Rev. Lett. 29, 349 (1972)

    Article  ADS  Google Scholar 

  78. D.J.O. Conner Phys. A 25, 101 (1992)

    Google Scholar 

  79. S. Berber, Y.-K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  80. L. Yang, P. Grassburger, B. Hu, Phys. Rev. E 74, 062101 (2006)

    Article  ADS  Google Scholar 

  81. S. Ghosh et al., Nat. Mater. 9, 555 (2010)

    Article  ADS  Google Scholar 

  82. M.H. Fischer, M. Sigrist, J. Phys: Conf. Ser. 200, 012034 (2010)

    Google Scholar 

  83. S. Krali et al., Soft Matter 8, 2460 (2012)

    Article  ADS  Google Scholar 

  84. S. Karimi, C.A. Ullrich, Phys. Rev. B 90, 245304 (2014)

    Article  ADS  Google Scholar 

  85. A.V. Chalyi, E.V. Zaitsea, K.A. Chalyy, G.V. Khrapijchuk, Ukr. Phys. J. 60, 888 (2015)

    Article  Google Scholar 

  86. A.V. Chalyi, E.V. Zaitseva, Bull. Kiev Univ. (Phys. Math.), no. 1, 287 (2009)

    Google Scholar 

  87. A.V. Chalyi, G.V. Hrapijchuk, L.M. Chernenko, K.A. Chalyy, E.V. Zaitseva, Ukr. Phys. J. 55, 1113 (2010)

    Google Scholar 

  88. K. Kawasaki, in Phase Transitions and Critical Phenomena, ed. by C. Domb, M.S. Green (Academic Press, New York, 1976)

    Google Scholar 

  89. A.V. Chalyi, V.P. Lukomskii, I.S. Gandzha, Ya.V. Tsekhmister, K.A. Chalyi, Non-Linear Processes in Physics: Oscillations, Waves and Self-Organization (Chetvertaya Khvylja, Kyiv, 2004)

    Google Scholar 

  90. К.A. Chalyi, L.A. Bulavin, A.V. Chalyi, J. Phys. Studies 9, 66 (2005)

    ADS  Google Scholar 

  91. V.G. Boiko, H.-J. Moegel, V.M. Sysoev, A.V. Chalyi, Usp. Fiz. Nauk 161, 77 (1991)

    Article  Google Scholar 

  92. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  93. V.G. Boiko, V.M. Sysoev, A.V. Chalyi, JETP 96, 842 (1990)

    Google Scholar 

  94. Y.B. Zel’dovich, D.D. Sokolov, Usp. Fiz. Nauk 146, 493 (1985)

    Google Scholar 

  95. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)

    Google Scholar 

  96. V.I. Arnold, Catastrophe Theory (Moscow University Press, Moscow, 1983)

    Google Scholar 

  97. T. Poston, I. Stewart, Catastrophe Theory and its Applications (Pitman, London, 1978)

    MATH  Google Scholar 

  98. A. Onuki, J. Chem. Phys. 85, 1122 (1986)

    Article  ADS  Google Scholar 

  99. A.P. Levanyuk, JETP 9, 571 (1959)

    Google Scholar 

  100. V.L. Ginzburg, Phys. Solid State 2, 1824 (1961)

    Google Scholar 

  101. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  102. H.C. Burstyn, J.V. Sengers, P. Esfandiari, A 19, 2402 (1980)

    Google Scholar 

  103. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, H.E. Stanley, S.-H. Chen, J. Phys. Chem. B 114, 1870 (2010)

    Article  Google Scholar 

  104. S.-H. Chen, F. Mallamace, C.-Y. Mou, M. Brocco, C. Corsaro, A. Faraone, L. Liu, Proc. Natl. Acad. Sci. USA 103, 2974 (2006)

    Google Scholar 

  105. S Sengupta, S Karmakar, C Dasgupta, and S Sasry, J. Chem. Phys. 138, 10.1063 (2013)

    Google Scholar 

  106. H.S. Cummins, E.R. Pike, Photon Correlation and Light Beating Spectroscopy (Plenum Press, New York, 1974)

    Book  Google Scholar 

  107. M.A. Anisimov, V.A. Agayan, A.A. Povodyrev, J.A. Sengers, E.E. Gorodetskii, Phys. Rev. E 57, 1946 (1998)

    Article  ADS  Google Scholar 

  108. B.W. Law, J.C. Nieuwoudt, Phys. Rev, A. 40, 3880, 1989

    Google Scholar 

  109. B.J. Askerson, H.J.M. Hanley, J. Chem. Phys. 73, 3568 (1980)

    Article  ADS  Google Scholar 

  110. R.D. Mountain, J.M. Deutch, J. Chem. Phys. 50, 1103 (1969)

    Article  ADS  Google Scholar 

  111. T. Bryk, F. Gorelli, G. Ruocco, M. Santoro, T. Scopigno, Phys. Rev. E 90, 042301 (2014)

    Google Scholar 

  112. L.A. Bulavin, K.A. Chalyy, Neutron Optics of Mesoscale Liquids (Naukova Dumka, 2006)

    Google Scholar 

  113. L.A. Bulavin, V.F. Chekhun, K.A. Chalyy et al., Phys. Alive 12, 94 (2004)

    Google Scholar 

  114. L.A. Bulavin, I.M. Vyshnevskii, V.F. Chekhun, R.V. Bila, V.P. Tryndyak, K.A. Chalyy, Rep. Natl. Acad. Sci. Ukraine 7, 176 (2004)

    Google Scholar 

  115. A.V. Chalyi, Non-Equilibrium Processes in Physics and Biology (Naukova Dumka, Kyiv, 1997)

    Google Scholar 

  116. A.V. Chalyi, Ya.V. Tsekhmister, K.A. Chalyi, Processes of Ordering and Self-organization in Fluctuation Models of Open Systems (Bogomolets National Medical University, Kyiv, 2001)

    Google Scholar 

  117. Medical and Biological Physics, ed. by A.V. Chalyi (Nova Knyha, Vinnytsia, 2013)

    Google Scholar 

  118. Oncology. Selected Lectures for Students and Physicians, ed. by V.F. Chekhun (Zdorovje Ukrainy, Kyiv, 2010)

    Google Scholar 

  119. A.V. Chalyi, Rep. Natl. Acad. Sci. Ukraine 9, 170 (2012)

    Google Scholar 

  120. F. Mallamace et al., Adv. Chem. Phys. 152, 203 (2013)

    Google Scholar 

  121. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, S. Vasi, H.E. Stanley, Material Research Society (MRS) Advances, pp. 1–12 (2016)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. M. A. Anisimov, Prof. T. M. Bryk, Prof. L. A. Bulavin, Prof. K. A. Chalyy, Prof. M. F. Holovko, Prof. M. P. Kozlovskii, Prof. H.-J. Moegel, Prof. W. Schroer, Prof. V. M. Sysoev, Prof. A. N. Vasilev, Dr. L. M. Chernenko, Dr. G. V. Hrapijchuk, Dr. A. V. Oleinikova, and Dr. E. V. Zaitseva for helpful remarks and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Chalyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chalyi, A.V. (2018). Dynamic Anomalies in Confined Supercooled Water and Bulk Fluids. In: Bulavin, L., Chalyi, A. (eds) Modern Problems of Molecular Physics. Springer Proceedings in Physics, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-61109-9_12

Download citation

Publish with us

Policies and ethics