Skip to main content

Magnetic Fluids: Structural Aspects by Scattering Techniques

  • Conference paper
  • First Online:
Modern Problems of Molecular Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 197))

Abstract

The understanding of stabilization mechanisms for ferrofluids (which are presented as fine dispersions of magnetic nanoparticles coated with surfactants) is an important favorable circumstance in the synthesis of highly stable magnetic colloids with specific properties. The presented work reviews principal results that were obtained in thorough investigations of ferrofluid’s stability regarding changes in the structure at nanoscale under various conditions, including the determination and analysis of the agglomeration regimes in biocompatible ferrofluids for biomedical applications. The structural features of the ferrocolloids and concomitant surfactant solutions were revealed and further analyzed principally relying on the data of Small-Angle Neutron Scattering (SANS). Thereby, for magnetic fluids prepared on the basis of nonpolar liquids (benzene, decalin) with magnetite nanoparticles covered by a single-layer shell of monocarboxylic acids, the studying of the effect of surfactant excess showed a tendency to a significant enhancement of the effective attraction between free (non-adsorbed) acid molecules. This explains the sharp and sudden loss of a ferrofluid’s stability that occurs because of the liquid crystal transition when exceeding some critical concentration of an acid. This transition depends strongly on an interparticle solvent-acid interaction and peculiarity of the different critical concentrations is for different solvents. For an aqueous ferrofluid (nanomagnetite stabilized with a double-layered shell of sodium oleate (SO)) that is used as a precursor for a biocompatible modification with polyethylene glycol (PEG), the fraction of micelles of non-adsorbed surfactant and its change under modification were found by SANS. The comparison with another kinds of water-based ferrocolloids showed the different rate of surfactant adsorption on magnetite particles surface depending on the surfactant type. The aggregate reorganization and its growth in the ferrofluid after ‘PEGylation’ were observed. In order to illuminate the possible influence of the micelle formation with free surfactants on this process in the presence of polymer, the SANS study was performed on mixed SO/PEG aqueous solutions. SANS results revealed drastic morphological and interacting changes of micelles due to addition of PEG. In particular, it was concluded the screening of the micelle interaction due to the formation of an effective PEG shell around micelles at high (about 10 vol%) concentration of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Berkovski, in Magnetic Fluids and Applications Handbook, ed. by V. Bashtovoy (Begell House, Inc. New York, 1996), p. 350

    Google Scholar 

  2. L. Vekas, M.V. Avdeev, D. Bica, Magnetic nanofluids: synthesis and structure, in Nanoscience in Biomedicine, Ch. 25, ed. by D. Shi. (Springer, Berlin, 2009), pp. 650–728, https://doi.org/10.1007/978-3-540-49661-8_25

  3. Proceedings of the Seventh International Conference on the Scientific and Clinical Applications of Magnetic Carriers, ed. by Urs. Häfeli, M. Zborowski. J. Mag. Mag. Mater. 321, 1335–1688 (2009), https://doi.org/10.1016/j.jmmm.2009.03.008

  4. A.B. Jódar-Reyes, A. Martín-Rodríguez, J.L. Ortega-Vinuesa, J. Coll. Int. Sci. 298(1), 248–257 (2006), https://doi.org/10.1016/j.jcis.2005.12.035

    Article  ADS  Google Scholar 

  5. M.V. Avdeev, B. Mucha, K. Lamszus, L. Vékás, V.M. Garamus, A.V. Feoktystov, O. Marinica, R. Turcu, R. Willumeit, Structure and in vitro biological testing of water-based ferrofluids stabilized by monocarboxylic acids. Langmuir 26(11), 8503–8509 (2010), https://doi.org/10.1021/la904471f

    Article  Google Scholar 

  6. E. Tombácz, D. Bica, A. Hajdú, E. Illés, A. Majzik, L. Vékás, Surfactant double layer stabilized magnetic nanofluids for biomedical application. J. Phys.: Condens. Matter 20(20), 204103(6) (2008), https://doi.org/10.1088/0953-8984/20/20/204103

  7. R.W. Chantrell, J. Sidhu, P.R. Bissell, P.A. Bates, Dilution induced instability in ferrofluids. J. Appl. Phys. 53, 8341 (1982), https://doi.org/10.1063/1.330358

    Article  ADS  Google Scholar 

  8. V. Socoliuc, C. Daia, A. Taculescu, L. Vekas, Colloidal stability loss with increasing dilution of polar carrier based magnetic colloids stabilized by steric repulsion. Rev. de Chimiel. 64(10), 1194–1196 (2013), https://www.researchgate.net/profile/V_Socoliuc/publication/260405832_Colloidal_Stability_Loss_with_Increasing_Dilution_of_Polar_Carrier_based_Magnetic_Colloids_Stabilized_by_Steric_Repulsion/links/561df40908aecade1acb4399.pdf?origin=publication_list

  9. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985), p. 344, https://doi.org/10.1017/S0022112089220773

  10. V.I. Petrenko, M.V. Avdeev, V.L. Aksenov, L.A. Bulavin, L. Rosta, Magnetic fluids with excesses of a surfactant according to the data of small-angle neutron scattering. J. Surf. Invest. 3(1), 161–164 (2009), https://doi.org/10.1134/S1027451009010261

    Article  Google Scholar 

  11. D. Bica, Preparation of magnetic fluids for various applications. Rom. Rep. Phys. 47, 265 (1995)

    Google Scholar 

  12. M.S. Dababneh, N.Y. Ayoub, The effect of oleic acid on the stability of magnetite ferrofluid. IEEE Trans. Magn. 31(6), 4178–4180 (1995), https://doi.org/10.1109/20.489918

    Article  ADS  Google Scholar 

  13. P. Izquierdo, J. Esquena, Th.F Tadros, C. Dederen, M.J. Garcia, N. Azemar, C. Solans, Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18(1), 26–30 (2002), https://doi.org/10.1021/la010808c

    Article  Google Scholar 

  14. V.L. Alexeev, The instability of silica sol in concentrated solutions of triton X100. J. Coll. Interface Sci. 206(2), 416–423 (1998), https://doi.org/10.1006/jcis.1998.5709

    Article  ADS  Google Scholar 

  15. J. Bibette, D. Roux, B. Pouligny, Creaming of emulsions: the role of depletion forces induced by surfactant. J. Phys. II France. 2, 401–424 (1992), https://doi.org/10.1051/jp2:1992141

    Article  Google Scholar 

  16. Y.-J. Yang, A.V. Kelkar, X. Zhu, G. Bai, H.T. Ng, D.S. Corti, E.I. Franses, Effect of sodium dodecylsulfate monomers and micelles on the stability of aqueous dispersions of titanium dioxide pigment nanoparticles against agglomeration and sedimentation. J. Colloid Interface Sci. 450, 434–445 (2015), https://doi.org/10.1016/j.jcis.2015.02.051

    Article  ADS  Google Scholar 

  17. O.Z. Durham, D.A. Shipp, Suspension thiol-ene photopolymerization: effect of stabilizing agents on particle size and stability. Polymer 55(7), 1674–1680 (2014), https://doi.org/10.1016/j.polymer.2014.02.044

    Article  Google Scholar 

  18. T. Dederichs, M. Möller, O. Weichold, Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration. Langmuir 25(4), 2007–2012 (2009), https://doi.org/10.1021/la8033676

    Article  Google Scholar 

  19. T. Dederichs, M. Möller, O. Weichold, Temperature-dependent colloidal stability of hydrophobic nanoparticles caused by surfactant adsorption/desorption and depletion flocculation. Langmuir 25(18), 10501–10506 (2009), https://doi.org/10.1021/la901216g

    Article  Google Scholar 

  20. F. Tardani, C. La Mesa, Attempts to control depletion in the surfactant-assisted stabilization of single-walled carbon nanotubes. Colloids Surf. A 443, 123–128 (2014), https://doi.org/10.1016/j.colsurfa.2013.11.001

    Article  Google Scholar 

  21. E. Tombácz, M. Szekeres, A. Hajdú, I.Y. Tóth, R.A. Bauer, D. Nesztor, E. Illés, I. Zupkó, L. Vékás, Colloidal stability of carboxylated iron oxide nanomagnets for biomedical use. Period. Polytech. Chem. Eng. 58, 3–10 (2014), https://doi.org/10.3311/PPch.7285

  22. W. Huang, X. Wang, Study on the properties and stability of ionic liquid-based ferrofluids. Colloid Polym. Sci. 290(16), 1695–1702 (2012), https://doi.org/10.1007/s00396-012-2773-0

    Article  Google Scholar 

  23. M.V. Avdeev, V.L. Aksenov, Small-angle neutron scattering in structure research of magnetic fluids. Phys. Usp. 53(10), 971–993 (2010), https://doi.org/10.3367/UFNe.0180.201010a.1009

    Article  ADS  Google Scholar 

  24. J.S. Pedersen, Analysis of small angle scattering data from colloids. J. Coll. Interf. Sc. 70, 171–210 (1997), https://doi.org/10.1016/S0001-8686(97)00312-6

    Article  Google Scholar 

  25. L.A. Feigin, D.I. Svergun, in Structure Analysis by Small-Angle X-ray and Neutron Scattering, ed. by G.W. Taylor (Plenum Press, New York, 1987), p. 335, https://doi.org/10.1007/978-1-4757-6624-0

  26. V.I. Petrenko, M.V. Avdeev, V.L. Aksenov, L.A. Bulavin, L. Rosta, Effect of surfactant excess in non-polar ferrofluids probed by small-angle neutron scattering. Solid State Phenom. 198(152–153), 198–201 (2009), https://doi.org/10.4028/www.scientific.net/SSP.152-153.198

    Article  Google Scholar 

  27. A.V. Nagornyi, V.I. Petrenko, L.A. Bulavin, M.V. Avdeev, L. Almásy, L. Rosta, V.L. Aksenov, Structure of the magnetite-oleic acid-decalin magnetic fluid from small-angle neutron scattering data. Phys. Solid State 56(1), 91–96 (2014), https://doi.org/10.1134/S1063783414010259

    Article  ADS  Google Scholar 

  28. L.A. Bulavin, A.V. Nagornyi, V.I. Petrenko, M.V. Avdeev, L. Almásy, L. Rosta, V.L. Aksenov, Neutron studies of the structure of non-polar magnetic fluids with surfactant excess. Ukr. J. Phys. 58(12), 1143–1148 (2013), https://doi.org/10.15407/ujpe58.12.1143

  29. V.I. Petrenko, M.V. Avdeev, L. Almásy L.A. Bulavin, V.L. Aksenov, L. Rosta, V.M. Garamus, Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Coll. Surf. A. 337(1–3), 91–95 (2009), https://doi.org/10.1016/j.colsurfa.2008.12.001

  30. V.I. Petrenko, M.V. Avdeev, L.A. Bulavin, L. Almasy, N.A. Grigoryeva, V.L. Aksenov, Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering. Crystallogr. Rep. 61(1), 121–125 (2016), https://doi.org/10.1134/S1063774516010168

    Article  ADS  Google Scholar 

  31. M.V. Avdeev, D. Bica, L. Vékás, V.L. Aksenov, A.V. Feoktystov, O. Marinica, L. Rosta, V.M. Garamus, R. Willumeit, Comparative structure analysis of non-polar organic ferrofluids stabilized by saturated mono-carboxylic acids. J. Coll. Inter. Sci. 334(1), 37–41 (2009), https://doi.org/10.1016/j.jcis.2009.03.005

    Article  ADS  Google Scholar 

  32. A.V. Nagornyi, V.I. Petrenko, M.V. Avdeev, L.A. Bulavin, V.L. Aksenov, Analysis of small-angle neutron scattering from very dilute magnetic fluids. J. Surf. Invest. 4(6), 976–981 (2010), https://doi.org/10.1134/S1027451010060169

    Article  Google Scholar 

  33. A.V. Nagornyi, L.A. Bulavin, V.I. Petrenko, M.V. Avdeev, V.L. Aksenov, Sensitivity of small-angle neutron scattering method at determining the structural parameters in magnetic fluids with low magnetite concentrations. Ukr. J. Phys. 58(8), 735–741 (2013), https://doi.org/10.15407/ujpe58.08.0735

  34. A.V. Nagornyi, V.I. Petrenko, M.V. Avdeev, L.A. Bulavin, L. Rosta, V.L. Aksenov, On determination of the structural parameters of polydisperse magnetic fluids by small-angle neutron scattering. J. Surf. Invest. 7(1), 99–104 (2013), https://doi.org/10.1134/S1027451013010291

    Article  Google Scholar 

  35. VYu. Bezzabotnov, L. Cser, T. Grosz, G. Jancso, YuM Ostanevich, Small-angle neutron scattering in aqueous solutions of tetramethylurea. J. Phys. Chem. 96, 976 (1992), https://doi.org/10.1021/j100181a079

    Article  Google Scholar 

  36. J. Bloustine, T. Virmani, G.M. Thurston, S. Fraden, Light scattering and phase behavior of lysozyme-poly (ethylene glycol) mixtures. Phys. Rev. Lett. 96, 087803 (2006), https://doi.org/10.1103/PhysRevLett.96.087803

  37. V.L. Aksenov, M.V. Avdeev, A.V. Shulenina, Y.V. Zubavichus, A.A. Veligzhanin, L. Rosta, V.M. Garamus, L. Vekas, Neutron and synchrotron radiation scattering by nonpolar magnetic fluids. Crystallogr. Rep. 56(5), 792–801 (2011), https://doi.org/10.1134/S1063774511050026

  38. V.I. Petrenko, L.A. Bulavin, M.V. Avdeev, V.L. Aksenov, L. Rosta, Neutron investigations of the interaction of surfactant molecules in non-polar solvent. Ukr. J. Phys. 53(3), 229–233 (2008), https://www.ujp.bitp.kiev.ua/files/journals/53/3/530304p.pdf

  39. G. Lancz, M.V. Avdeev, V.I. Petrenko, V.M. Garamus, M. Koneracká, P. Kopčanský, SANS study of poly (ethylene glycol) solutions in D2O. Acta Phys. Pol. A. 118(5), 980–982 (2010), https://doi.org/10.12693/APhysPolA.118.980

  40. V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L.A. Bulavin, V.L. Aksenov, L. Rosta, Micelle formation in aqueous solutions of dodecylbenzene sulfonic acid studied by small-angle neutron scattering. Colloids Surf. A: Physicochem. Eng. Aspects. 369(1–3), 160–164 (2010), https://doi.org/10.1016/j.colsurfa.2010.08.023

  41. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, L. Rosta, N.A. Grigoryeva, M.V. Avdeev, On the microstructure of organic solutions of mono-carboxylic acids: combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations. Chem. Phys. 461(5), 1–10 (2015), https://doi.org/10.1016/j.chemphys.2015.08.017

    Article  ADS  Google Scholar 

  42. V.I. Petrenko, L.A. Bulavin, M.V. Avdeev, P. Kopcansky, Structure diagnostics of biorelevant associates and complexes in liquid nanosystems by small-angle scattering, in Nanobiophysics: Fundamentals and Applications (Pan Stanford, 2015), pp. 129–161, https://doi.org/10.1201/b20480-6

  43. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, L. Rosta, M.V. Avdeev, Effect of the solute-solvent interface on small-angle neutron scattering from organic solutions of short alkyl chain molecules as revealed by molecular dynamics simulation. J. Appl. Crystallogr. 46(2), 372–378 (2013), https://doi.org/10.1107/S002188981205131X

    Article  Google Scholar 

  44. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, M.V. Avdeev, Calculating the bulk properties of decalins and fatty acids in decalin according to data from molecular dynamics simulation. Russ. J. Phys. Chem. A 87(5), 745–751 (2013), https://doi.org/10.1134/S0036024413040092

    Article  Google Scholar 

  45. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, M.V. Avdeev, Solute-solvent interaction in nonpolar solutions of oleic acid as revealed by molecular dynamics simulation. J. Surf. Invest. 7(6), 1128–1132 (2013), https://doi.org/10.1134/S1027451013060281

    Article  Google Scholar 

  46. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, L. Rosta, M.V. Avdeev, Molecular dynamics simulations for small-angle neutron scattering: scattering length density spatial distributions for mono-carboxylic acids in d-decalin, in Models in Bioscience and Materials Research: Molecular Dynamics and Related Techniques (Nova Science Publishers, Inc., 2013), pp. 139–154 https://www.scopus.com/inward/record.url?scp=84895354238&partnerID=8YFLogxK

  47. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, L. Rosta, M.V. Avdeev, Molecular dynamics simulation analysis of small-angle neutron scattering by a solution of stearic acid in benzene. Phys. Solid State 56(1), 81–85 (2014), https://doi.org/10.1134/S1063783414010132

    Article  ADS  Google Scholar 

  48. R.A. Eremin, K.T. Kholmurodov, V.I. Petrenko, M.V. Avdeev, Oleic acid in benzene and decalin solutions: solvation shell effect on small-angle neutron scattering, in Computational Materials and Biological Sciences (Nova Science Publishers, Inc., 2015), pp. 25–34

    Google Scholar 

  49. M.V. Avdeev, E. Dubois, G. Mériguet, E. Wandersman, V.M. Garamus, A.V. Feoktystov, R. Perzynski, Small-angle neutron scattering analysis of a water-based magnetic fluid with charge stabilization: contrast variation and scattering of polarized neutrons. J. Appl. Crystallogr. 42(6), 1009–1019 (2009), https://doi.org/10.1107/S0021889809036826

    Article  Google Scholar 

  50. M.V. Avdeev, A.V. Feoktystov, P. Kopcansky, G. Lancz, V.M. Garamus, R. Willumeit, M. Timko, M. Koneracka, V. Zavisova, N. Tomasovicova, A. Jurikova, K. Csach, L.A. Bulavin, Structure of water-based ferrofluids with sodium oleate and polyethylene glycol stabilization by small-angle neutron scattering: contrast-variation experiments. J. Appl. Crystallogr. 43(5), 959–969 (2010), https://doi.org/10.1107/S0021889810025379

    Article  Google Scholar 

  51. A.V. Nagornyi, L.A. Bulavin, V.I. Petrenko, O.I. Ivankov, O.V. Tomchuk, M.V. Avdeev, L.Vékás, Determination of the structure factor of interparticle interactions in the ferrofluid by small-angle neutron scattering. Nucl. Phys. At. Energy. 15(1), 59–65 (2014), https://jnpae.kinr.kiev.ua/15.1/Articles_PDF/jnpae-2014-15-0059-Nagornyi.pdf

  52. A.V. Nagornyi, V.I. Petrenko, M.V. Avdeev, S.O. Solopan, O.V. Yelenich, A.G. Belous, A.A. Veligzhanin, A.Yu. Gruzinov, Ya.V. Zubavichus, L.A. Bulavin, Structure of water-based magnetic liquids by small-angle x-ray scattering. Rom. J. Phys. 61(3–4), 483–490 (2016), https://www.nipne.ro/rjp/2016_61_3-4/0483_0490.pdf

  53. A.V. Nagornyi, V.I. Petrenko, M.V. Avdeev, O.V. Yelenich, S.O. Solopan, A.G. Belous, AYu. Gruzinov, O.I. Ivankov, L.A. Bulavin, Structural aspects of magnetic fluid stabilization in aqueous agarose solutions. J. Mag. Mag. Mater. 431, 16–19 (2017), https://doi.org/10.1016/j.jmmm.2016.10.018

    Article  ADS  Google Scholar 

  54. A.V. Feoktystov, M.V. Avdeev, V.L. Aksenov, V.I. Petrenko, L.A. Bulavin, D. Bica, L. Vekas, V.M. Garamus, R. Willumeit, Contrast variation in small-angle neutron scattering from magnetic fluids stabilized by different mono-carboxylic acids. Solid State Phenom. 152–153, 186–189 (2009), https://doi.org/10.4028/www.scientific.net/SSP.152-153.186

    Article  Google Scholar 

  55. V.I. Petrenko, V.L. Aksenov, M.V. Avdeev, L.A. Bulavin, L. Rosta, L. Vekas, V.M. Garamus, R. Willumeit, Analysis of the structure of aqueous ferrofluids by the small-angle neutron scattering method. Phys. Solid State 52(5), 974–978 (2010), https://doi.org/10.1134/S1063783410050185

    Article  ADS  Google Scholar 

  56. V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L.A. Bulavin, V.L. Aksenov, L. Rosta, Micelle formation in aqueous solutions of dodecylbenzene sulfonic acid studied by small-angle neutron scattering. Colloids Surf. A 369, 160–164 (2010), https://doi.org/10.1016/j.colsurfa.2010.08.023

    Article  Google Scholar 

  57. V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L.A. Bulavin, P. Kopcansky, Impact of polyethylene glycol on aqueous micellar solutions of sodium oleate studied by small-angle neutron scattering. Colloids Surf. A 480, 191–196 (2015), https://doi.org/10.1016/j.colsurfa.2014.11.064

    Article  Google Scholar 

  58. D. Bica, L. Vékás, M.V. Avdeev, O. Marinicǎ, V. Socoliuc, M. Bǎlǎsoiu, V.M. Garamus, Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J. Mag. Mag. Mater. 311(1) 17–21 (2007), https://doi.org/10.1016/j.jmmm.2006.11.158

  59. L. Vekas, D. Bica, M.V. Avdeev, Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications. China Particuol. 5, 43–49 (2007), https://doi.org/10.1016/j.cpart.2007.01.015

    Article  Google Scholar 

  60. M.V. Avdeev, V.L. Aksenov, M. Balasoiu et al., Comparative analysis of the structure of sterically stabilized ferrofluids on polar carriers by small-angle neutron scattering. J. Coll. Inter. Sci. 295, 100–107 (2006), https://doi.org/10.1016/j.jcis.2005.07.048

    Article  ADS  Google Scholar 

  61. M. Balasoiu, M.V. Avdeev, V.L. Aksenov et al., Structural organization of water-based ferrofluids with sterical stabilization as revealed by SANS. J. Mag. Mag. Mater. 300, e225–e228 (2006), https://doi.org/10.1016/j.jmmm.2005.10.085

    Article  Google Scholar 

  62. V. Petrenko, L. Bulavin, M. Avdeev, V. Garamus, M. Koneracka, P. Kopcansky, Structure and interaction of poly (ethylene glycol) in aqueous solutions Small-angle neutron scattering data. Macromolecular Symposia 335, 20–23 (2014), https://doi.org/10.1002/masy.201200117

    Article  Google Scholar 

  63. I.V. Gapon, V.I. Petrenko, M.V. Avdeev, L.A. Bulavin, YuN Khaydukov, O. Soltwedel, V. Zavisova, I. Antal, P. Kopcansky, Consideration of diffuse scattering in the analysis of specular neutron reflection at the magnetic fluid-silicon interface. J. Surf. Invest. 9(2), 320–325 (2015), https://doi.org/10.1134/S1027451015010073

    Article  Google Scholar 

  64. M.V. Avdeev, V.I. Petrenko, I.V. Gapon, L.A. Bulavin, A.A. Vorobiev, O. Soltwedel, M. Balasoiu, L. Vekas, V. Zavisova, P. Kopcansky, Comparative structure analysis of magnetic fluids at interface with silicon by neutron reflectometry. Appl. Surf. Sci. 352, 49–53 (2015), https://doi.org/10.1016/j.apsusc.2015.02.170

    Article  ADS  Google Scholar 

  65. M. Kubovcikova, I.V. Gapon, V. Zavisova, M. Koneracka, V.I. Petrenko, O. Soltwedel, L. Almasy, M.V. Avdeev, P. Kopcansky, On the adsorption properties of magnetic fluids: impact of bulk structure. J. Mag. Mag. Mater. 427, 67–70 (2016), https://doi.org/10.1016/j.jmmm.2016.10.104

    Article  ADS  Google Scholar 

  66. I.V. Gapon, V.I. Petrenko, L.A. Bulavin, M. Balasoiu, M. Kubovcikova, V. Zavisova, M. Koneracka, P. Kopcansky, M.V. Avdeev, Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data. J. Phys.: Confer. Series.  848 (2017) 012015, https://doi.org/10.1088/1742-6596/848/1/012015

  67. A. Vorobiev, J. Major, H. Dosch, G. Gordeev, D. Orlova, Magnetic field dependent ordering in ferrofluids at SiO2 interfaces. Phys. Rev. Lett. 93, 267203 (2004), https://doi.org/10.1103/PhysRevLett.93.267203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Petrenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrenko, V.I. et al. (2018). Magnetic Fluids: Structural Aspects by Scattering Techniques. In: Bulavin, L., Chalyi, A. (eds) Modern Problems of Molecular Physics. Springer Proceedings in Physics, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-61109-9_10

Download citation

Publish with us

Policies and ethics