Skip to main content

Optical Switching in Data Centers: Architectures Based on Optical Packet/Burst Switching

  • Chapter
  • First Online:

Abstract

Driven by the cloud computing, Internet of things, and emerging big data applications, more stringent requirements in terms of high bandwidth, low latency, and large interconnectivity are imposed on the communications within the data centers (DC). Traditional intra-DC network based on electronic switches is organized in a hierarchical topology, which is affected by the communication bottleneck and poor power efficiency. Architectural and technological innovations are desired, in order to enable the scalable growth both in the number of connected endpoints and exchanged traffic volume.

Transparent optical switching has been considered as an attractive technology in this respect, providing data-rate and data-format agnostic operations and in the meantime eliminating the power consuming transceivers as well as format-dependent interfaces. In particular, holding the promise of efficient and flexible bandwidth utilization enabled by the sub-wavelength granularity, optical packet switching (OPS) and optical burst switching (OBS) technologies have been widely investigated for intra-DC network. Besides the capabilities of single switching element, the overall performance of these networks would largely depend on the architecture comprising the optical switches. Innovative networking solutions therefore are needed, to fully deliver the potentials of the optical switches and in the meantime interconnect increasing number of compute nodes.

The technologies used for implementing OPS and OBS nodes are first discussed in this chapter, based on which several optical data center network (DCN) architectures exploiting OPS and OBS are presented. Following that, the OPSquare DCN which combines the advanced optical switching technology and intelligent networking solution is reported with promising assessment results.

This is a preview of subscription content, log in via an institution.

References

  1. International Data Corporation, The new need for speed in the datacenter. in 2015.International Data Corporation, “The New Need for Speed in the Datacenter, 2015

    Google Scholar 

  2. S. Shah, N. Guenov, Multicore Processing: Virtualization and Data Center, Freescale, 2012

    Google Scholar 

  3. B. Bland, Titan – early experience with the Titan system at Oak Ridge National Laboratory. in 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis, 2012

    Google Scholar 

  4. G. Bell, J. Gray, A. Szalay, Petascale computational systems. IEEE Comput. 39(1), 110–112 (2006)

    Article  Google Scholar 

  5. T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers in the wild. in 10th ACM SIGCOMM Conference on Internet Measurement, 2010

    Google Scholar 

  6. L.A. Barroso, J. Clidaras, U. Hölzle, The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archiect. 8(3), 1–154 (2013)

    Article  Google Scholar 

  7. A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, VL2: a scalable and flexible data center network. ACM SIGCOMM Comp. Commmun. Rev. 39(4), 51–62 (2009)

    Article  Google Scholar 

  8. Cisco, Cisco Global Cloud Index: Forecast and Methodology, 2014–2019, 2015

    Google Scholar 

  9. A. Roy, H. Zeng, J. Bagga, G. Porter, A.C. Snoeren, Inside the social network’s (datacenter) network. ACM SIGCOMM Comput. Commun. Rev. SIGCOMM’15 45(4), 123–137 (2015)

    Article  Google Scholar 

  10. A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, A. Vahdat, Jupiter rising: a decade of clos topologies and centralized control in Google’s datacenter Network. ACM SIGCOMM Comput. Commun. Rev. SIGCOMM’15 45(4), 183–197 (2015)

    Article  Google Scholar 

  11. A. Greenburg, J. Hamilton, D.A. Maltz, P. Patel, The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev. 391, 68–73 (2009)

    Google Scholar 

  12. A. Hammadi, L. Mhamdi, A survey on architectures and energy efficiency in Data Center Networks. Comput. Commun. 40, 1–21 (2014)

    Article  Google Scholar 

  13. A. Ghiasi, Large data centers interconnect bottlenecks. Opt. Express 23(3), 2085–2090 (2015)

    Article  Google Scholar 

  14. C. Kachris, I. Tomkos, A roadmap on optical interconnects in Data Centre Networks. in International Conference on Transparent Optical Networks, 2015.

    Google Scholar 

  15. K. Aziz, M. Fayyaz, Optical interconnects for Data Center Networks, in Handbook on Data Centers, (Springer, New York, 2015), pp. 449–483

    Google Scholar 

  16. S.J. Ben Yoo, Optical packet and burst switching technologies for the future photonic Internet. J. Lightw. Technol. 24(12), 4468–4492 (2006)

    Article  Google Scholar 

  17. Polatis Series 7000, [Online]. Available: http://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp

  18. CALIENT [Online]. Available: http://www.calient.net/products/s-series-photonic-switch/

  19. S. Han, T.J. Seok, K. Yu, N. Quack, R.S. Muller, M.C. Wu, 50x50 polarization-insensitive silicon photonic MEMS switches: design and experiment. in 42nd European Conference on Optical Communication, Paper Th.3.A. 5, Dusseldorf, Germany, 2016

    Google Scholar 

  20. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima, Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express 23, 17599–17606 (2015)

    Article  Google Scholar 

  21. M. Iwama, M. Takahashi, M. Kimura, Y. Uchida, J. Hasesawa, R. Kawahara, N. Kagi, LCOS-based flexible grid 1×40 wavelength selective switch using planar lightwave circuit as spot size converter. in 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, 2015

    Google Scholar 

  22. F. Testa et al, Design and implementation of an integrated reconfigurable silicon photonics switch matrix in IRIS project, J. Select. Top. Quant. Electron., vol. 22, n. 6, pp. 155-168, 2016.

    Article  Google Scholar 

  23. EpiPhotonics, [Online]. Available: http://epiphotonics.com/products1.htm

  24. H. Kouketsu, S. Kawasaki, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, K. Utaka, High-speed and Compact Non-blocking 8×8 InAlGaAs/InAlAs Mach-Zehnder-Type Optical Switch Fabric. Opt. Fiber Commun. Conf. M2K(3) (2014)

    Google Scholar 

  25. H. Okayama, M. Kawahara, Prototype 32×32 optical switch matrix, Electron. Lett., 30(14), 1128–1129, l 1994

    Google Scholar 

  26. Y. Muranaka, T. Segawa, R. Takahashi, Integrated fat-tree optical switch with Cascaded MZIs and EAM-gate array. in 21st OptoElectronics and Communications Conference/International Conference on Photonics in Switching 2016 (OECC/PS 2016), paper WF3–2, Niigata, Japan, July 2016

    Google Scholar 

  27. Y. Yin, R. Proietti, X. Ye, C.J. Nitta, V. Akella, S.J.B. Yoo, LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J. Select. Top. Quant. Electron. 19(2), 3600409 (2012)

    Article  Google Scholar 

  28. Z. Cao, R. Proietti, S.J.B. Yoo, Hi-LION: hierarchical large-scale interconnection optical network with AWGRs. J. Opt. Commun. Netw. 7(1), A97–A105 (2015)

    Article  Google Scholar 

  29. T. Segawa, M. Nada, M. Nakamura, Y. Suzaki, R. Takahashi, An 8×8 broadcast-and-select optical switch based on monolithically integrated EAM-gate array. in European Conf. Exhibition Optical Communication, Paper TuT4.2, London, UK, 2013

    Google Scholar 

  30. R. Luijten, R. Grzybowski, The OSMOSIS optical packet switch for supercomputers. in Optical Fiber Communication Conference, 2009

    Google Scholar 

  31. H. Wang, A. Wonfor, K.A. Williams, R.V. Penty, I.H. White, Demonstration of a lossless monolithic 16x16 QW SOA switch. in 35th European Conference on Optical Communication, Vienna, 2009

    Google Scholar 

  32. T. Tanemura, I. Soganci, T. Oyama, T. Ohyama, S. Mino, K. Williams, N. Calabretta, H.J.S. Dorren, Y. Nakano, Large-capacity compact optical buffer based on InP integrated phased-array switch and coiled fiber delay lines, IEEE/OSA. J. Lightwave Technol. 29(4), 396–402 (2011)

    Article  Google Scholar 

  33. C. Raffaelli, K. Vlachos, N. Andriolli, D. Apostolopoulos, J. Buron, R. van Caenegem, G. Danilewicz, J.M. Finochietto, J. Garcia-Haro, D. Klonidis, M. O’Mahony, G. Maier, A. Pattavina, P. Pavon-Marino, S. Ruepp, M. Savi, M. Scaffardi, I. Tomkos, A. Tzanakaki, L. Wosinska, O. Zouraraki, F. Neri, Photonics in switching: architectures, systems and enabling technologies. Comput. Netw. 52(10), 1873–1890 (2008)

    Article  Google Scholar 

  34. R. Stabile, A. Albores-Mejia, A. Rohit, K.A. Williams, Integrated optical switch matrices for packet data networks. Microsyst. Nanoeng. 2, 15042 (2016)

    Article  Google Scholar 

  35. M. Glick, M. Dales, D. McAuley, T. Lin, K. Williams, R. Penty, I. White, SWIFT: a testbed with optically switched data paths for computing applications. In Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005

    Google Scholar 

  36. C. Kachris, I. Tomkos, A Survey on Optical Interconnects for Data Centers. IEEE Commun. Surv. Tut. 14(4), 1021–1036 (2012)

    Article  Google Scholar 

  37. C. Kachris, K. Bergman, I. Tomkos, Optical Interconnects for Future Data Center Networks (Springer, New York, 2013)

    Book  Google Scholar 

  38. J. Gripp, J. E. Simsarian, J.D. LeGrange, P. Bernasconi, D.T. Neilson, Photonic terabit routers: the IRIS project. in Optical Fiber Communication Conference, 2012.

    Google Scholar 

  39. K. Xi, Y.-H. Kao, H.J. Chao, A Petabit bufferless optical switch for data center networks, Optical Interconnects for Future Data Center Networks, Springer New York, 2013, pp. 135–154.

    Google Scholar 

  40. R. Proietti, Y. Yawei, Y. Runxiang, C.J. Nitta, V. Akella, C. Mineo, S.J.B. Yoo, Scalable optical interconnect architecture using AWGR-based TONAK LION switch with limited number of wavelengths. J. Lightw. Technol. 31, 4087–4097 (2013)

    Article  Google Scholar 

  41. R. Luijten, C. Minkenberg, R. Hemenway, M. Sauer, R. Grzybowski, Viable opto-electronic HPC interconnect fabrics. in Proceedings of Supercomputing 2005, Seattle, 2005.

    Google Scholar 

  42. O. Liboiron-Ladouceur, A. Shacham, B.A. Small, B.G. Lee, H. Wang, C.P. Lai, A. Biberman, K. Bergman, The Data Vortex optical packet switched interconnection network. J. Lightw. Technol. 26(13), 1777–1789 (2008)

    Article  Google Scholar 

  43. W. Miao, F. Yan, N. Calabretta, Towards petabit/s all-optical flat data center networks based on WDM optical cross-connect switches with flow control. J. Lightw. Technol. 34(17), 4066–4075 (2016)

    Article  Google Scholar 

  44. M. Imran, M. Collier, P. Landais, K. Katrinis, Software-defined optical burst switching for HPC and cloud computing data centers. J. Opt. Commun. Netw. 8(8), 610–620 (2016)

    Article  Google Scholar 

  45. C.Y. Li, N. Deng, M. Li, Q. Xue, P.K.A. Wai, Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers. IEEE J. Select. Top. Quant. Electron. 19(2), 3700508–3700508 (2013)

    Article  Google Scholar 

  46. M. Fiorani, S. Aleksic, M. Casoni, Hybrid optical switching for data center networks. J. Electric. Comput. Eng. 2014, 1–13 (2014)

    Article  Google Scholar 

  47. M. Imran, M. Collier, P. Landais, K. Katrinis, HOSA: hybrid optical switch architecture for data center networks. in 12th ACM International Conference on Computing Frontiers, 2015

    Google Scholar 

  48. K.-I. Kitayama, Y.-C. Huang, Y. Yoshida, R. Takahashi, T. Segawa, S. Ibrahim, T. Nakahara, Y. Suzaki, M. Hayashitani, Y. Hasegawa, Y. Mizukoshi, A. Hiramatsu, Torus-Topology Data Center Network Based on Optical Packet/Agile Circuit Switching with Intelligent Flow Management. J. Lightw. Technol. 33(5), 1063–1071 (2015)

    Article  Google Scholar 

  49. LIGHTNESS Project, [Online]. Available: http://www.ict-lightness.eu/

  50. S. Yan, E. Hugues-Salas, V.J.F. Rancaňo, Y. Shu, G.M. Saridis, B.R. Rofoee, Y. Yan, A. Peters, S. Jain, T. May-Smith, P. Petropoulos, D.J. Richardson, G. Zervas, D. Simeonidou, Archon: A Function Programmable Optical Interconnect Architecture for Transparent Intra and Inter Data Center SDM/TDM/WDM Networking. J. Lightw. Technol. 33(8), 1586–1595 (2015)

    Article  Google Scholar 

  51. Q. Huang, Y. Yeo, and L. Zhou, Optical burst-over-circuit switching for multi-granularity traffic in data centers. in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, paper OW3H.5, 2013

    Google Scholar 

  52. W. Miao, S. Di Lucente, J. Luo, H. Dorren, N. Calabretta, Low latency and efficient optical flow control for intra data center networks. Opt. Express 22(1), 427–434 (2014)

    Article  Google Scholar 

  53. W. Miao, F. Agraz, S. Peng, S. Spadaro, G. Bernini, J. Perello, G. Zervas, R. Nejabati, N. Ciulli, D. Simeonidou, H. Dorren, N. Calabretta, SDN-enabled OPS with QoS guarantee for reconfigurable virtual data center networks, IEEE/OSA. J. Opt. Commun. Netw. 7(7), 634–643 (2015)

    Article  Google Scholar 

  54. N. Calabretta, K. Williams, H. Dorren, Monolithically integrated WDM cross-connect switch for nanoseconds wavelength, space, and time switching. in 2015 European Conference on Optical Communication (ECOC), 2015

    Google Scholar 

  55. N. Calabretta, W. Miao, K. Mekonnen, K. Prifti, K. Williams, Monolithically integrated WDM cross-connect switch for high-performance optical data center networks. in Optical Fiber Communication Conference 2017 (OFC 2017), paper Tu3F.1, 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Calabretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Calabretta, N., Miao, W. (2018). Optical Switching in Data Centers: Architectures Based on Optical Packet/Burst Switching. In: Testa, F., Pavesi, L. (eds) Optical Switching in Next Generation Data Centers. Springer, Cham. https://doi.org/10.1007/978-3-319-61052-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61052-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61051-1

  • Online ISBN: 978-3-319-61052-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics