Skip to main content

Trends in High Speed Interconnects: InP Monolithic Integration

  • Chapter
  • First Online:
Optical Switching in Next Generation Data Centers

Abstract

InP PIC technologies offer unsurpassed optoelectronic performance and are a key enabler for high-performance optical transceivers. InP lasers are the default solution for the communications lasers operating in the 1300–1600 nm wavelength window. As integration technologies continue to mature and information rates scale up, increasingly sophisticated monolithic techniques are deployed for both discrete devices and integrated circuits for longer-reach networking and higher data rates. The possibility to engineer the band gap across the wafer delivers a rich range of functions in an ever-decreasing footprint. Lasers are combined with additional devices such as modulators, multiplexers, detectors and hybrids within the same chip. Wafer scale production offers a proven route to cost-effective, high-volume production. Monolithic integration reduces cost through reduced test time and simplified assembly and packaging. This chapter reviews the techniques, capabilities and future potential for InP-integrated photonics with a particular reference to requirements in the rapidly evolving data interconnect market, driven in particular by data centres, where energy efficiency, bandwidth and volume production are crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. C.R. Doerr, K. Okamoto, Planar lightwave circuits in fiber-optic communications, in Optical Fiber Telecommunications V A (Fifth Edition) Volume A: Components and Subsystems, ed. by I. P. Kaminow, T. Li, A. E. Willner (Eds), (Elsevier, Amsterdam, 2008)

    Chapter  Google Scholar 

  2. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R.A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, D. Welch, InP photonic integrated circuits. Invited Paper, IEEE J. Sel. Top. Quantum Electron. 16(5), 1113 (2010)

    Google Scholar 

  3. R.A. Griffin, S.K. Jones, N. Whitbread, S.C. Heck, L.N. Langley, InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation. Invited Paper, IEEE J. Sel. Top. Quantum Electron. 19(6), 3401209 (2013)

    Article  Google Scholar 

  4. F. Kish, R. Nagarajan, D. Welch, et al., From visible light-emitting diodes to large scale III-V photonic integrated circuits. Proc. IEEE 101(10), 2255–2270 (2013)

    Article  Google Scholar 

  5. R. Stabile, A. Rohit, K.A. Williams, Monolithically integrated 8×8 space and wavelength selective cross-connect. J. Lightwave Technol. 32(2), 201 (2014)

    Article  Google Scholar 

  6. M.K. Smit et al., An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29(8), 083001–081/41 (2014)

    Article  Google Scholar 

  7. JePPIX roadmap http://www.jeppix.eu/document_store/JePPIXRoadmap2015.pdf, 2015

  8. R.A. Griffin, B. Pugh, J. Fraser, I.B. Betty, K. Anderson, G. Busico, C. Edge, T. Simmons, Compact, high power, MQW InP Mach-Zehnder transmitters with full-band tunability for 10 Gb/s DWDM. 4, 903–904.proceedings European Conference on Optical Communications (2005)

    Google Scholar 

  9. D. d’Agostino, G. Carnicella, C. Ciminelli, H.P.M.M. Ambrosius, M.K. Smit, Design of a compact high-performance InP ring resonator. Proceedings MEPHISTO 2014

    Google Scholar 

  10. R. Stabile, K.A. Williams, Relaxed dimensional tolerance whispering gallery microbends. J. Lightwave Technol. 29(12), 2011 (1892)

    Google Scholar 

  11. R. Stabile, A. Albores-Mejia, K.A. Williams, Monolithic active-passive 16 × 16 optoelectronic switch. Opt. Lett. 37(22), 4666 (2012)

    Article  Google Scholar 

  12. K.A. Williams, E.A.J.M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X.J.M. Leijtens, J.J.G.M. van der Tol, M.K. Smit, InP photonic circuits using generic integration. Photon. Res. 3(5), B60–B68 (2015)

    Article  Google Scholar 

  13. H. el-Refaei, D. Yevick, T. Jones, Slanted-rib waveguide InGaAsP–InP polarization converters. J. Lightwave Technol. 22(5), 1352 (2004)

    Article  Google Scholar 

  14. M. Zaitsu, T. Tanemura, Y. Nakano, Numerical study on fabrication tolerance of half-ridge InP polarization converters. IEICE Trans. Electron. 97-C(7), 731 (2014)

    Article  Google Scholar 

  15. D.O. Dzibrou, J.J.G.M. van der Tol, M.K. Smit, Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits. Opt. Lett. 38(7), 1061 (2013)

    Article  Google Scholar 

  16. D.O. Dzibrou, J.J.G.M. van der Tol, M.K. Smit, Tolerant polarization converter for InGaAsP-InP photonic integrated circuits. Opt. Lett. 38(18), 3482 (2013)

    Article  Google Scholar 

  17. M.A. Naeem, M. Haji, B.M. Holmes, D.C. Hutchings, J.H. Marsh, A.E. Kelly, Generation of high speed polarization modulated data using a monolithically integrated device. IEEE J. Sel. Top. Quantum Electron. 21(4), 3400205 (2015)

    Article  Google Scholar 

  18. S. Ghosh, Y. Kawabata, T. Tanemura, Y. Nakano, Integrated Stokes vector analyzer on InP. Paper WD4–4, proceedings OECC/PS (2016)

    Google Scholar 

  19. M. Trajkovic, High speed electro-absorption modulator: a step towards high performance and high density PICs. Fotonica Magazine (2016)

    Google Scholar 

  20. S.C. Lee, R. Varrazza, S. Yu, Advanced optical packet switching functions using active vertical-couplers-based optical switch matrix. J. Sel. Top. Quantum Electron. 12(4), 817–827 (2006)

    Article  Google Scholar 

  21. V. Tolstikhin, Multi-guide vertical integration in InP: PIC technology for cost-sensitive applications. Proceedings Conference on Lasers and Electro-Optics Pacific Rim (2013)

    Google Scholar 

  22. I. Moerman, P.P. van Daele, P.M. Demeester, A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices. IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997)

    Article  Google Scholar 

  23. S. McDougall, O. Kowalski, C. Hamilton, F. Camacho, B. Qiu, M. Ke, R. De La Rue, A. Bryce, J. Marsh, Monolithic integration via a universal damage enhanced quantum-well intermixing technique. IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998)

    Article  Google Scholar 

  24. A. McKee, C.J. McLean, G. Lullo, A.C. Bryce, R.M. Rue, J.H. Marsh, Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing. IEEE J. Quantum Electron. 33, 45–55 (1997)

    Article  Google Scholar 

  25. E.J. Skogen, J.W. Raring, G.B. Morrison, C.S. Wang, V. Lal, M.L. Masanovic, L.A. Coldren, Monolithically integrated active components: A quantum-well intermixing approach. J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005)

    Article  Google Scholar 

  26. J.W. Raring, E.J. Skogen, L.A. Johansson, M.N. Sysak, S.P. DenBaars, L.A. Coldren, Widely tunable negative-chirp SG-DBR laser/EA-modulated transmitter. J. Lightwave Technol. 23(1), 80–86 (2005)

    Article  Google Scholar 

  27. R. Bhat, Non-planar and masked-area epitaxy by organometallic chemical vapour deposition. Semicond. Sci. Technol. 8, 984–993 (1993)

    Article  Google Scholar 

  28. M. Gibbon, J.P. Stags, C.G. Cureton, E.J. Thrush, C.J. Jones, Selective-area low-pressure MOCVD of GalnAsP and related materials on planar InP substrates. Semicond. Sci. Technol 8, 998–1010 (1993)

    Article  Google Scholar 

  29. N. Dupuis, J. Décobert, C. Jany, F. Alexandre, A. Garreau, R. Brenot, N. Lagay, F. Martin, D. Carpentier, J. Landreau, F. Pommereau, F. Poingt and C. Kazmierski, Selective area growth engineering for 80 nm spectral range AlGaInAs 10 Gbit/s remote amplified modulator. Proceedings indium phosphide and related materials (2008)

    Google Scholar 

  30. H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, R. Brenot, Selective-area-growth technology for flexible active building blocks. Proceedings advanced photonics congress, IM2A.3 (2012)

    Google Scholar 

  31. J. Décobert, N. Dupuis, P.Y. Lagrée, N. Lagay, A. Ramdane, A. Ougazzaden, F. Poingt, C. Cuisin, C. Kazmierski, Modeling and characterization of AlGaInAs and related materials using selective area growth by metal-organic vapor phase epitaxy. J. Cryst. Growth 298, 28–31 (2007)

    Article  Google Scholar 

  32. J. Decobert, G. Binet, A.D.B. Maia, P.Y. Lagrée, Christophe Kazmierski, “AlGaInAs MOVPE selective area growth for photonic integrated circuits”. Adv Opt Technol 4, 2 (2015)

    Google Scholar 

  33. F. Soares, M. F. Baier, Z. Zhang, T. Gaertner, D. Franke, J. Decobert, M. Achouche, D. Schmidt, M. Moehrle, N. Grote, M. Schell, 155 nm-span multi-wavelength DFB laser array fabricated by selective area growth. Paper MoC4–4. Proceedings compound semiconductor week (2016)

    Google Scholar 

  34. J. Binsma, P. Thijs, T. van Dongen, E. Jansen, A. Staring, G. van den Hoven, L. Tiemeijer, Characterization of butt-joint InGaAsP waveguides and their application to 1310 nm DBR-type MQW gain-clamped semiconductor optical amplifiers. IEICE Trans. Electron. E80-C, 675–681 (1997)

    Google Scholar 

  35. Y. Barbarin, E.A.J.M. Bente, C. Marquet, E.J.S. Leclère, J.J.M. Binsma, M.K. Smit, Measurement of reflectivity of butt-joint active–passive interfaces in integrated extended cavity lasers. Photon. Technol. Lett. 17(11), 2265–2267 (2005)

    Article  Google Scholar 

  36. W. Kobayashi, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka and F. Kano, 40-Gbps direct modulation of 1.3-μm InGaAlAs DFB laser in compact TO-CAN package. Paper OWD2, proceedings optical fiber communications conference (2011)

    Google Scholar 

  37. K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, S. Tanaka, Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photon. Technol. Lett. 27(5), 534–536 (2015)

    Article  Google Scholar 

  38. U. Troppenz, J. Kreissl, M. Möhrle, C. Bornholdt, W. Rehbein, B. Sartorius, I. Woods, M. Schell, 40 Gbit/s directly modulated lasers: Physics and application. 7953, 79530F-1–79530F-10, proceedings SPIE (2011)

    Google Scholar 

  39. J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, M. Schell, Up to 40-Gb/s directly modulated laser operating at low driving current: Buried-heterostructure passive feedback laser (BH-PFL). IEEE Photon. Technol. Lett. 24(5), 362 (2012)

    Article  Google Scholar 

  40. J.A.J. Fells, M.A. Gibbon, G.H.B. Thompson, I.H. White, R.V. Penty, A.P. Wright, R.A. Saunders, C.J. Armistead, E.M. Kimber, Chirp and system performance of integrated laser modulators. IEEE Photon. Technol. Lett. 7(11), 1279 (1995)

    Article  Google Scholar 

  41. M. Theurer, Y. Wang, L. Zeng, U. Troppenz, G. Przyrembel, A. Sigmund, M. Moehrle, M. Schell, 2×56 Gb/s from a double side electroabsorption modulated DFB laser. Paper Tu3D.6 OFC (2016)

    Google Scholar 

  42. M. Theurer, H. Zhang, Y. Wang, W. Chen, L. Zeng, U. Troppenz, G. Przyrembel, A. Sigmund, M. Moehrle, M. Schell, 2×56 Gb/s from a double side electroabsorption modulated DFB laser and application in novel optical PAM4 generation. J. Lightwave Technol. Accepted for publication 03 August 2016

    Google Scholar 

  43. M. Theurer, G. Przyrembel, A. Sigmund, W.D. Molzow, U. Troppenz, M. Mohrle, 56 Gb/s L-band InGaAlAs ridge waveguide electroabsorption modulated laser with integrated SOA. Phys. Status Solidi A 213(4), 970–974 (2016)

    Article  Google Scholar 

  44. M.A. Mestre, H. Mardoyan, C. Caillaud, R. Rios-Muller, J. Renaudier, P. Jenneve, F. Blache, F. Pommereau, J. Decobert, F. Jorge, P. Charbonnier, A. Konczykowska, J.Y. Dupuy, K. Mekhazni, J.F. Paret, M. Faugeron, F. Mallecot, M. Achouche, S. Bigo, Compact InP-based DFB-EAM enabling PAM-4 112 Gb/s transmission over 2 km. J. Lightwave Technol. 34(7), 1572 (2016)

    Article  Google Scholar 

  45. U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W.D. Molzow, A. Sigmund, H.G. Bach, M. Moehrle, 1.3 μm electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s. Paper Th-B2–5, Montpelier, international conference on indium phosphide and related materials (2014)

    Google Scholar 

  46. S.A. Gebrewold, R. Brenot, R. Bonjour, A. Josten, B. Baeuerle, D. Hillerkuss, C. Hafner, J. Leuthold, Colorless low-cost RSOA based transmitters optimized for highest capacity through bit- and power-loaded DMT. Proceedings optical fiber communications conference, Tu2C.4 (2016)

    Google Scholar 

  47. H.K. Shim, H. Kim, Y.C. Chung, Effects of electrical and optical equalizations in 28-Gb/s RSOA-based WDM PON. Photon. Technol. Lett. 28(22), 2537–2540 (2016)

    Article  Google Scholar 

  48. B.Y. Cao, M.L. Deng, R.P. Giddings, X. Duan, Q.W. Zhang, M. Wang, J.M. Tang, RSOA intensity modulator frequency chirp-enabled 40Gb/s over 25km IMDD PON systems. Proceedings optical fiber communications conference, W1J.3 (2015)

    Google Scholar 

  49. J. Summers, T. Vallaitis, P. Evans, M. Ziari, P. Studenkov, M. Fisher, J. Sena, A. James, S. Corzine, D. Pavinski, J. Ou-Yang, M. Missey, D. Gold, W. Williams, M. Lai, D. Welch, F. Kish, Monolithic InP-based coherent transmitter photonic integrated circuit with 2.25 Tbit/s capacity. Electron. Lett. 50(16), 1150 (2014)

    Article  Google Scholar 

  50. K. Ławniczuk, C. Kazmierski, J.G. Provost, M.J. Wale, R. Piramidowicz, P. Szczepanski, M.K. Smit, X.J.M. Leijtens, InP-based photonic multiwavelength transmitter with DBR laser array. Photon Technol. Lett. 25(4), 352 (2013)

    Article  Google Scholar 

  51. J.E. Zucker, K.L. Jones, B.I. Miller, U. Koren, Miniature Mach-Zehnder InGaAsP quantum well waveguide interferometers for 1.3 μm. IEEE Photon. Technol. Lett. 2(1), 32–34 (1990)

    Article  Google Scholar 

  52. J.E. Zucker, K.L. Jones, M.A. Newkirk, R.P. Gnall, B.I. Miller, M.G. Young, U. Koren, C.A. Burrus, B. Tell, Quantum well interferometric modulator monolithically integrated with 1.55 μm tunable distributed Bragg reflector laser. Electron. Lett. 28(20), 1888–1889 (1992)

    Article  Google Scholar 

  53. S.C. Heck, S.K. Jones, R.A. Griffin, N. Whitbread, P.A. Bromley, G. Harris, D. Smith, L.N. Langley, T. Goodhall, Miniaturized InP dual I&Q Mach Zehnder modulator with full monitoring functionality for CFP2. Proceedings European conference on optical communications, paper Tu.4.4.2 (2014)

    Google Scholar 

  54. S. Dogru, N. Dagli, 0.77-V drive voltage electro-optic modulator with bandwidth exceeding 67 GHz. Opt. Lett. 39(20), 6074 (2014)

    Article  Google Scholar 

  55. S. Dogru, N. Dagli, 0.2V drive voltage substrate removed electro-optic Mach-Zehnder modulators with MQW cores at 1.55 μm. IEEE/OSA J. Lightwave Technol. 32(3), 435–439 (2014)

    Article  Google Scholar 

  56. R.A. Griffin, N. D. Whitbread, S.K. Jones, S.C. Heck, P. Firth, D. Govan, T. Goodall, InP coherent optical modulator with integrated amplification for high capacity transmission. Paper Th4E.2, proceedings optical fiber communications conference (2015)

    Google Scholar 

  57. S. Chandrasekhar, X. Liu, P.J. Winzer, J.E. Simsarian, R.A. Griffin, Compact all-InP laser-vector-modulator for generation and transmission of 100-Gb/s PDM-QPSK and 200-Gb/s PDM-16-QAM. J. Lightwave Technol. 32(4), 736 (2014)

    Article  Google Scholar 

  58. T. Tatsumi, N. Itabashi, T. Ikagawa, N. Kono, M. Seki, K. Tanaka, K. Yamaji, Y. Fujimura, K. Uesaka, T. Nakabayashi, H. Shoji, S. Ogita, A compact low-power 224-Gb/s DP-16QAM modulator module with InP-based modulator and linear driver ICs. Paper Tu3H.5, proceedings optical fiber communications conference (2014)

    Google Scholar 

  59. W. Forysiak, D.S. Govan, Progress toward 100-G digital coherent pluggables using InP-based photonics. J. Lightwave Technol. 32(16), 2925 (2014)

    Article  Google Scholar 

  60. A. Aimone, I.G. Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns. G. Fiol, M. Gruner, J. Fischer, J. Honecker, A. Steffan, D. Kissinger, A.C. Ulusoy, M. Schell, DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module. Postdeadline paper Th5C.6 proceedings optical fiber communications conference (2016)

    Google Scholar 

  61. L.A. Coldren, G.A. Fish, Y. Akulova, J.S. Barton, L. Johansson, C.W. Coldren, Tunable semiconductor lasers: A tutorial. J. Lightwave Technol. 22(1), 193–202 (2004)

    Article  Google Scholar 

  62. A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, M.J. Wale, Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance. J. Sel. Top. Quantum Electron. 11(1), 149 (2005)

    Article  Google Scholar 

  63. J.E. Simsarian, M.C. Larson, H.E. Garrett, H. Xu, T.A. Strand, Less than 5-ns wavelength switching with an SG-DBR laser. Photon. Technol. Lett. 18(4), 565 (2006)

    Article  Google Scholar 

  64. G. Gilardi, W. Yao, M.K. Smit, M.J. Wale, Observation of dynamic extinction ratio and bit error rate degradation due to thermal effects in integrated modulators. J. Lightwave Technol. 33(11), 2199 (2015)

    Article  Google Scholar 

  65. G. Gilardi, W. Yao, H.R. Haghighi, M.K. Smit, M.J. Wale, Substrate thickness effects on thermal crosstalk in InP-based photonic integrated circuits. J. Lightwave Technol. 32(17), 3061 (2014)

    Article  Google Scholar 

  66. G. Gilardi, W. Yao, H.R. Haghighi, X.J.M. Leijtens, M.K. Smit, M.J. Wale, Deep trenches for thermal crosstalk reduction in InP-based photonic integrated circuits. J. Lightwave Technol. 32(24), 4864 (2014)

    Article  Google Scholar 

  67. W. Yao, G. Gilardi, N. Calabretta, M.K. Smit, M.J. Wale, Experimental and numerical study of electrical crosstalk in photonic integrated circuits. J. Lightwave Technol. 33(4), 934 (2015)

    Article  Google Scholar 

  68. K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, M. Yaita, 110 GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55 μm wave-length. Photon. Technol. Lett. 6, 719–721 (1994)

    Article  Google Scholar 

  69. J.E. Bowers, C.A. Burrus, Ultrawide-band long-wavelength p-i-n photodetectors. J. Lightwave Technol. 5(10), 1339–1350 (1987)

    Article  Google Scholar 

  70. R. Vetury, I. Gontijo, K. Krishnamurthy, R. Pullela, M.J. Rodwell, High sensitivity and wide-dynamic-range optical receiver for 40 Gbit/s optical communication networks. Electron. Lett. 39(1), 91–92 (2003)

    Article  Google Scholar 

  71. H.G. Bach, Ultra high-speed photodetectors and photoreceivers for telecom and datacom also aiming at THz applications. Proceedings European conference on integrated optics, FB0 (2007)

    Google Scholar 

  72. (a) M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, D. Carpentier, InGaAs communication photodiodes: From low- to high-power-level designs. Photon. J. Invited Paper 2(3), 460 (2010). (b) J. Wei, F. Xia, S.R. Forrest, A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode. IEEE Photon. Technol. Lett. 14(11), 1590–1592 (2002)

    Google Scholar 

  73. K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation. J. Lightwave Technol. 29(2), 153 (2011)

    Article  Google Scholar 

  74. J.C. Campbell, Recent advances in telecommunications avalanche photodiodes. J. Lightwave Technol. 25(1), 109 (2007)

    Article  Google Scholar 

  75. T. Nakata, T. Takeuchi, K. Maliita, Y. Amamiya, T. Kalo, Y. Suzuki, T. Torikai, High-sensitivity 40-Gb/s receiver with a wideband InAlAs waveguide avalanche photodiode. Proceedings European conference on optical commununications, Paper 10.5.1 (2002)

    Google Scholar 

  76. K. Makita, T. Nakata, K. Shiba, T. Takeuchi, 40 Gbps waveguide photodiodes. NEC J Adv. Technol. 234–240, Summer (2005)

    Google Scholar 

  77. B. Mason, S. Chandrasekhar, A. Ougazzaden, C. Lentz, J.M. Geary, L.L. Buhl, L. Peticolas, K. Glogovsky, J.M. Freund, L. Reynolds, G. Przybylek, F. Walters, A. Sirenko, J. Boardman, T. Kercher, M. Radar, J. Grenko, D. Monroe, L. Ketelsen, Photonic integrated receiver for 40 Gbit/s transmission. Electron. Lett. 38(20), 1196–1197 (2002)

    Article  Google Scholar 

  78. C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, G. Glastre, M. Achouche, Integrated SOA-PIN detector for high-speed short reach applications. Invited Paper, J. Lightwave Technol. 33(8), 1596 (2015)

    Article  Google Scholar 

  79. P. Angelini, F. Blache, C. Caillaud, P. Chanclou, M. Goix, F. Jorge, K. Mekhazni, J.Y. Dupuy, M. Achouche, Record −22.5 dBm sensitivity SOA-PIN-TIA photoreceiver module for 40 Gb/s applications. IEEE Photon. Technol. Lett. 27(19), 2027 (2015)

    Article  Google Scholar 

  80. M. Anagnosti, C. Caillaud, F. Blache, F. Jorge, P. Angelini, J.F. Paret, M. Achouche, Optimized high speed UTC photodiode for 100 Gbit/s applications. J. Sel. Top. Quantum Electron. 20(6), 3801107 (2014)

    Article  Google Scholar 

  81. M. Anagnosti, C. Caillaud, J.F. Paret, F. Pommereau, G. Glastre, F. Blache, M. Achouche, Record gain × bandwidth (6.1 THz) monolithically integrated SOA-UTC photoreceiver for 100-Gbit/s applications. Invited Paper, J. Lightwave Technol. 33(6), 1186 (2015)

    Google Scholar 

  82. M. Theurer, T. Göbel, D. Stanze, U. Troppenz, F. Soares, N. Grote, M. Schell, Photonic-integrated circuit for continuous-wave THz generation. Opt. Lett. 38(19), 3724 (2013)

    Article  Google Scholar 

  83. L. Shen, Y. Jiao, W. Yao, Z. Cao, J.P. van Engelen, G.C. Roelkens, M.K. Roelkens, M.K. Smit, J.J.G.M. van der Tol, High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform. Opt. Express 24(8), 8290–8301 (2016)

    Article  Google Scholar 

  84. Y. Tateiwa, M. Takechi, H. Yagi, Y. Yoneda, K. Yamaji, Y. Fujimura, 100 Gbit/s compact digital coherent receiver using InP-based mixer. SEI Tech. Rev. 77, 59 (2013)

    Google Scholar 

  85. S. Farwell, P. Aivaliotis, Y. Qian, P. Bromley, R. Griggs, J.N.Y. Hoe, C. Smith, S. Jones, InP coherent receiver chip with high performance and manufacturability for CFP2 modules. W1I.6, proceedings optical fiber communications conference (2014)

    Google Scholar 

  86. R. Stabile, A. Albores-Mejia, A. Rohit, K.A. Williams, Integrated optical switch matrices for packet data networks, Microsys. Nanoeng. Rev. Art. 2, 15042 (2016)

    Google Scholar 

  87. I.M. Soganci, T. Tanemura, K.A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M.K. Smit, H.J.S. Dorren, Y. Nakano, Monolithically integrated InP 1 × 16 optical switch with wavelength-insensitive operation. Photon. Technol. Lett. 22(3), 143–145 (2010)

    Article  Google Scholar 

  88. I.M. Soganci, T. Tanemura, Y. Nakano, Integrated phased-array switches for large-scale photonic routing on chip. Laser Photon. Rev. 6, 549–563 (2012)

    Article  Google Scholar 

  89. T. Tanemura, I.M. Soganci, T. Oyama, T. Ohyama, S. Mino, K.A. Williams, N. Calabretta, H.J.S. Dorren, Y. Nakano, Large-capacity compact optical buffer based on InP integrated phased-array switch and coiled fiber delay lines. J. Lightwave Technol. 29(4), 396–402 (2011)

    Article  Google Scholar 

  90. M.J. Kwack, T. Tanemura, A. Higo, Y. Nakano, Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection. Opt. Express 20(27), 28734 (2012)

    Article  Google Scholar 

  91. Q. Cheng, A. Wonfor, R.V. Penty, I.H. White, Scalable, low-energy hybrid photonic space switch. J. Lightwave Technol. 31(18), 3077–3084 (2013)

    Article  Google Scholar 

  92. H. Wang, A. Wonfor, K.A Williams, R.V. Penty and I.H. White, Demonstration of a lossless monolithic 16 × 16 QW SOA switch. Post-deadline paper, proceedings European conference on optical communications (2009)

    Google Scholar 

  93. R. Stabile, N. Calabretta, K.A. Williams, Switch-filter wavelength selector: Simulation and experiment. IET Optoelectron. 8(1), 1–10 (2014)

    Article  Google Scholar 

  94. R. Stabile, P. DasMahapatra, K.A. Williams, 4×4 InP switch matrix with electro-optically actuated higher order micro-ring resonators. IEEE Photon. Technol. Lett. Accepted for publication (2016)

    Google Scholar 

  95. R. Stabile, N. Calabretta, K.A. Williams, H.J.S. Dorren, Monolithic 16-wavelength selector based on a chain of passband-flattened cyclic AWGs and optical switches. Opt. Lett. 40(8), 1795–1797 (2015)

    Article  Google Scholar 

  96. N. Calabretta, K.A. Williams, H.J.S. Dorren, Monolithically integrated WDM cross-connect switch for nanoseconds wavelength, space, and time switching. Proceedings European conference on optical communications, ID: 0296 (2015)

    Google Scholar 

  97. Q. Cheng, R. Stabile, A. Rohit, A. Wonfor, R.V. Penty, I.H. White, K.A. Williams, First demonstration of automated control and assessment of a dynamically reconfigured monolithic 8×8 wavelength-and-space switch. J. Opt. Comm. Networking 7(3), A388–A395 (2015)

    Article  Google Scholar 

  98. M.K. Smit, J. van der Tol, M.T. Hill, Moore’s law in photonics. Laser Photon. Rev. 6, 1–13 (2012)

    Article  Google Scholar 

  99. J.J.G.M. van der Tol, R. Zhang, J. Pello, F. Bordas, G.C. Roelkens, H.P.M.M. Ambrosius, P.J.A. Thijs, F. Karouta, M.K. Smit, Photonic integration in indium-phosphide membranes on silicon. IET Optoelectron. 5(5), 218–225 (2011)

    Article  Google Scholar 

  100. wipe. jeppix.eu

    Google Scholar 

  101. phastflex. jeppix.eu

    Google Scholar 

Download references

Acknowledgements

Past and present members of the Institute for Photonic Integration, formerly known as the COBRA institute, are thanked for their stimulating contributions in the preparation of this chapter. The authors are also grateful to partners in JePPIX – the Joint European Platform for Photonic Integrated Components and Circuits – for their insights. Research projects which have had a particular input include Paradigm, Phastflex, GetPICs, WIPE, Photronics and Smartlight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Williams, K., Docter, B. (2018). Trends in High Speed Interconnects: InP Monolithic Integration. In: Testa, F., Pavesi, L. (eds) Optical Switching in Next Generation Data Centers. Springer, Cham. https://doi.org/10.1007/978-3-319-61052-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61052-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61051-1

  • Online ISBN: 978-3-319-61052-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics