Skip to main content

Silicon Photonics Switch Matrices: Technologies and Architectures

  • Chapter
  • First Online:
Optical Switching in Next Generation Data Centers

Abstract

The successful introduction of optical switching in intra-data center communication will be enabled by high-radix, scalable, low-cost, low-footprint optical switching matrices. Silicon photonics, for the recent advancements achieved in the large-scale integration of optical functions in a single chip, thanks to the use of the same well-developed manufacturing infrastructures used for electronic integrated circuits (CMOS, MEMS, etc.), is considered the most promising technology for the implementation of this type of devices.

In the first part of this chapter, the physical phenomena exploited for optical switching in integrated matrices and the different types of switching cells used as elementary building blocks in scalable optical matrices are presented and discussed.

The second part of the chapter deals with the architectures of optical switching matrices. Three types of matrices are presented and discussed: those with response time in the microsecond range which are suitable for use in fast optical circuit switching, those with response time in the nanosecond range which are suitable for use in optical packet switching, and wavelength selective switch matrices.

Finally, the conclusions are drawn, briefly discussing the perspectives and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 24 June 2019

    The chapter was inadvertently published with an error. In page 246, line 33, the formula O[log2N] is incorrect. It should be O[N log2N]. The same has been updated.

Notes

  1. 1.

    The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 619194.

  2. 2.

    After the preparation of the manuscript an interesting paper has been published presenting a work on a polarization insensitive silicon photonics 50 × 50 switch matrix [53].

References

  1. K.J. Barker, A. Brenner, R. Hoare, A. Hoisie, A.K. Jones, D.J. Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C. Stunken, P. Walker, On the feasibility of optical circuit switching for high performances computing systems. in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing

    Google Scholar 

  2. A. Vahdat, H. Liu, X. Zhao, C. Johnson, The emerging optical data center. in Proceedings of OFC, 2011

    Google Scholar 

  3. Y. Ohsita, M. Murata, Data center network topologies using optical packet switches. in 32nd International Conference on Distributed Computing Systems Workshops, 2012

    Google Scholar 

  4. R.A. Soref, B.R. Bennet, Electrooptical effects in silicon. IEEE J. Quant. Electron. QE-23(1) (1987)

    Article  Google Scholar 

  5. T. Pinguet, G. Armijo, J. Balardeta, S. Barabas, B. Chase, Y. Chi, A. Dahl, P. De Dobbelaere, Y. De Koninck, S. Denton, M. Eker, S. Fathpour, D. Foltz, F. Gholami, S. Gloeckner, K.Y. Hon, S. Hovey, S. Jackson, W. Li, Y. Liang, M. Mack, G. Masini, G. McGee, A. Mekis, S. Pang, M. Peterson, L. Planchon, K. Roberson, S. Sahni, J. Schramm, M. Sharp, C. Sohn, K. Stechschulte, P. Sun, G. Vastola, S. Wang, G. Wong, Xu, K. Yokoyama, S. Yu, R. Zhou, Advanced silicon photonic transceivers. in IEEE 12th International Conference on Group IV Photonics (GFP), Vancouver, 2015

    Google Scholar 

  6. M. Nedeljkovic, R. Soref, G.Z. Mashanovic, Free-carrier electrorefraction and electroabsorbtion modulation predictions for silicon over the 1–14-um infrared wavelength range. IEEE Photon. J. 3(6) (2011)

    Google Scholar 

  7. N. Dupuis, Technologies for Fast, Scalable Silicon Photonics Switches, Photonics in Switching (2015)

    Google Scholar 

  8. G.T. Reed, G. Mashanovihc, F.Y. Gardes, D.J. Thomson, Silicon optical modulators. Nat. Photon. 4 (2010)

    Article  Google Scholar 

  9. B.G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J.R. Bickford, C.L. Schow, Silicon photonic switch fabrics in computer communications systems. J. Lightw. Technol. 33(4) (2015)

    Article  Google Scholar 

  10. L. Chen, Y. Tang, J.E. Bowers, L. Theogarajan, CMOS Enabled Silicon Photonics for Data Center Packet Switching. in IEEE/MTT-S International Microwave Symposium Digest, 2012

    Google Scholar 

  11. M. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, K. Shastri, Lowpower MOSCapacitor based silicon photonic modulators and CMOS drivers. in Proceedings of OFC, 2015

    Google Scholar 

  12. P. Pintus, C. Manganelli, F. Gambini, F. Di Pasquale, M. Fournier, O. Lemonnier, C. Kopp, C.J. Oton, Optimization of integrated silicon doped heaters for optical microring resonators. in Proceedings of ECOC, 2016

    Google Scholar 

  13. A.H. Atabaki, E. Shah Hosseini, A.A. Eftekhar, S. Yegnanarayanan, A. Adibi, Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Exp. 18(17/16) (2010)

    Article  Google Scholar 

  14. Ryan Aguinaldo, Alex Forencich, Christopher DeRose, Anthony Lentine, Douglas C. Trotter, Yeshaiahu Fainman, George Porter, George Papen, and Shayan Mookherjea, Wideband silicon-photonic thermo-optic switch in a wavelength division multiplexed ring network, Opt. Exp., vol. 22, N. 7, 8205 (2014)

    Google Scholar 

  15. Joris Van Campenhout, William M. J. Green, Solomon Assefa, and Yurii A. Vlasov, Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks, Opt. Exp. Vol. 17, N. 26, 24020–24029 (2009)

    Google Scholar 

  16. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Submilliwatt, ultrafast and broadband electro-optic silicon switches, Opt. Express, Vol. 18, N. 24, 25225–25231 (2010)

    Article  Google Scholar 

  17. M.S. Nawrocka, T. Liu, X. Wang, R.R. Panepucci, Tunable silicon microring resonator with wide free spectral range. Appl. Phys. Lett. 89(071110) (2006)

    Article  Google Scholar 

  18. Xianshu Luo, Junfeng Song, Shaoqi Feng, Andrew W. Poon, Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo and Dim-Lee Kwong, Electro-optically tunable switches with 100GHz flat-top passband and 45dB extinction ratio using silicon high-order coupled-microring resonators for optical interconnects. in Proceedings of OFC, 2012

    Google Scholar 

  19. An Introduction to MEMS, Loughborough University, in http://www.lboro.ac.uk/microsites/mechman/research/ipm-ktn/pdf/Technology_review/an-introduction-to-mems.pdf

  20. N. Farrington, G. Porter, S. Radhakrishnan, H.H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, A. Vahdat, Helios: a hybrid electrical/optical switch architecture for modular data centers. in SIGCOMM’10, New Delhi, India, 30 August–3 September 2010

    Google Scholar 

  21. L. Peng, Chan-Hyun Youn, Member, Wan Tang, Chunming Qiao, A novel approach to optical switching for intradatacenter networking. IEEE J. Lightw. Technol. 30(2) (2012)

    Article  Google Scholar 

  22. https://www.macom.com/products/product-detail/M21605

  23. http://www.macom.com/products/product-detail/MAXP-37161

  24. T.J. Seok, N. Quack, S. Han, R.S. Muller, M.C. Wu, Highly scalable digital silicon photonic MEMS switches. IEEE J. Lightw. Technol. 34(2) (2016)

    Article  Google Scholar 

  25. T.J. Seok, N. Quack, S. Han, W. Zhang, R.S. Muller, M.C. Wu, 64x64 low-loss and broadband digital silicon photonic MEMS switches. in Proceedings of ECOC, 2015

    Google Scholar 

  26. N. Quack, T.J. Seok, S. Han, W. Zhang, R.S. Muller, M.C. Wu, Row/column addressing of scalable silicon photonic MEMS switches. in International Conference on Optical MEMS and Nanophotonics, 2015

    Google Scholar 

  27. T.J. Seok, N. Quack, S. Han, R.S. Muller, M.C. Wu, Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3(1) (2016)

    Article  Google Scholar 

  28. P. DasMahapatra, R. Stabile, A. Rohit, K.A. Williams, Optical crosspoint matrix using broadband resonant switches. IEEE J. Select. Topics Quant. Electron 20(4) (2014)

    Article  Google Scholar 

  29. T. Goh, A. Himeno, M. Okuno, H. Takahashi and K. Hattori, High-extinction ratio and low-loss silica-based 8x8 strictly nonblocking thermooptic matrix switch, IEEE JLT, Vol. 17, N. 7, 1999

    Article  Google Scholar 

  30. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima, Ultra-compact 32x32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Exp. 23(13), 17599–17606 (2015)

    Article  Google Scholar 

  31. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima, 32×32 strictly non-blocking Si-wire optical switch on ultra-small die of 11×25 mm2. in Proceedings of OFC, 2015

    Google Scholar 

  32. Photonic Switches, Photonic Switching Fabrics and Methods For Data Centers, Patent WIPO-PCT WO 2016/149797 A1

    Google Scholar 

  33. S.J. Ben Yoo, 2D and 3D heterogeneous photonic integrated circuits. in Proceedings of SPIE, vol. 8989 89890A-1

    Google Scholar 

  34. Y. Huang, J. Song, X. Luo, T.-Y. Liow, G.-Q. Lo, CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration. Opt. Express 22(18), 21859–21865 (2014)

    Article  Google Scholar 

  35. L. Chen, Y.-k. Chen, Compact, low-loss and low-power 8×8 broadband silicon optical switch. Opt. Express 20(17), 18977–18985 (2012)

    Article  Google Scholar 

  36. K.-I. Kitayama, Y.-C. Huang, Y. Yoshida, R. Takahashi, T. Segawa, S. Ibrahim, T. Nakahara, Y. Suzaki, M. Hayashitani, Y. Hasegawa, Y. Mizukoshi, A. Hiramatsu, Torus-topology data center network based on optical packet/agile circuit switching with intelligent flow management. J. Lightw. Technol. 33(5), 1063–1071 (2015)

    Article  Google Scholar 

  37. H. Mehrvar, Y. Wang, X. Yang, M. Kiaei, H. Ma, J. Cao, D. Geng, D. Goodwill, E. Bernier, Scalable photonic packet switch test-bed for datacenters. in Proceedings of OFC, 2016

    Google Scholar 

  38. V. Benes, Permutation groups, complexes, and rearrangeable multistage connecting networks. Bell Syst. Tech. J. 43, 1619–1640 (1964)

    Article  Google Scholar 

  39. C. Chang, R. Melhem, Arbitrary size benes networks. Parallel Proc Lett (7, 3) (1997)

    Google Scholar 

  40. A. Pattavina, Switching Theory Architecture and Performance in Broadband ATM Networks (Wiley, Hoboken, 1998)

    Google Scholar 

  41. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, J. Chen, 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express 24(9) (2016)

    Article  Google Scholar 

  42. L. Qiao, W. Tang, T. Chu, Ultra-large-scale silicon optical switches, Group IV Photonics (GFP). in 2016 IEEE 13th International Conference

    Google Scholar 

  43. M. Yuang, P. Tien, H. Chen, W. Ruan, S. Zhong, J. Zhu, Y. Chen, J. Chen, OPMDC: Architecture design and implementation of a new optical pyramid data center network. IEEE/OSA J. Lightw. Technol. 33(10), 2019–2031 (2015)

    Article  Google Scholar 

  44. V. Kamchevska, A.K. Medhin, F. Da Ros, F. Ye, R. Asif, A.M. Fagertun, S. Ruepp, M. Berger, L. Dittmann, T. Morioka, L.K. Oxenløwe, M. Galili, Experimental demonstration of multidimensional switching nodes for all-optical data center networks. J. Lightw. Technol 34(8), 1837–1843 (2016)

    Article  Google Scholar 

  45. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen and Y. Chen, OSA: an optical switching architecture for data center networks with unprecedented flexibility, IEEE/ACM Trans. Netw., Vol. 22, N. 2, 2014

    Article  Google Scholar 

  46. M. George, S.P. Saridis, Y. Yan, A. Aguado, B. Guo, M. Arslan, C. Jackson, W. Miao, N. Calabretta, F. Agraz, S. Spadaro, G. Bernini, N. Ciulli, G. Zervas, R. Nejabati, D. Simeonidou, Lightness: A function-Virtualizable software defined data center network with all-optical circuit/packet switching. J. Lightw. Technol. 34(7), 1618–1627 (2016)

    Article  Google Scholar 

  47. F. Testa, C.J. Oton, C. Kopp, J.-M. Lee, R. Ortuno, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J.’.A. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G.B. Preve, N.Z.C.L. Manganelli, C. Castellan, G. Pares, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. Di Pasquale, S. Stracca, Design and implementation of an integrated reconfigurable silicon photonics switch matrix in IRIS project. IEEE J. Select. Topics Quant. Electron. 22(6) (2016)

    Article  Google Scholar 

  48. J. Song, Q. Fang, S.H. Tao, M.B. Yu, G.Q. Lo, D.L. Kwong, Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator. Opt. Express 16(12), 8359–8365 (2008)

    Article  Google Scholar 

  49. P. Pintus, C. Manganelli, S. Tondini, M. Mancinelli, F. Gambini, C. Castellan, F. Di Pasquale, L. Pavesi, F. Testa, C. J. Oton, Silicon photonics toolkit for integrated switching matrices, Photonic Technologies (Fotonica 2016). in 18th Italian National Conference, 2016

    Google Scholar 

  50. R.A. Budd, L. Schares, B.G. Lee, F.E. Doany, C. Baks, D.M. Kuchta, C.L. Schow, F. Libsch, Semiconductor optical amplifier (SOA) packaging for scalable and gain-integrated silicon photonic switching platforms. in IEEE 65th Electronic Components & Technology Conference (ECTC), 2015

    Google Scholar 

  51. K. Tanizawa, K. Suzuki, S. Suda, G. Cong, K. Ishii, J. Kurumida, K. Ikeda, S. Namiki, H. Kawashima, 4x4 Si-wire optical path switch with off-chip polarization diversity. JMoD 42, OECC (2015)

    Google Scholar 

  52. K. Suzuki, K. Tanizawa, S.-H. Kim, S. Suda, G. Cong, S. Namiki, K. Ikeda, H. Kawashima, Polarization Diversity 4x4 Si-Wire Optical Switch, Photonics in Switching (2015)

    Google Scholar 

  53. S. Han, T.J. Seok, K. Yu, N. Quack, R.S. Muller, M.C. Wu, 50x50 Polarization-Insensitive Silicon Photonics MEMS Switches: Design and Experiment, Post Deadline Paper, ECOC (2016)

    Google Scholar 

  54. N. Dupuis, B.G. Lee, A.V. Rylyakov, D.M. Kuchta, C.W. Baks, J.S. Orcutt, D.M. Gill, W.M.J. Green, C.L. Schow, Modeling and characterization of a nonblocking 4 × 4 Mach–Zehnder silicon photonic switch fabric. J. Lightw. Technol. 33(20) (2015)

    Google Scholar 

  55. B.G. Lee, A.V. Rylyakov, W.M.J. Green, S. Assefa, C.W. Baks, R. Rimolo-Donadio, D.M. Kuchta, M.H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S.M. Shank, C.L. Schow, Y.A. Vlasov, Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J. Lightw. Technol. 32(4) (2014)

    Article  Google Scholar 

  56. N. Dupuis, A.V. Rylyakov, C.L. Schow, D.M. Kuchta, C.W. Baks, J.S. Orcutt, D.M. Gill, W.M.J. Green, B.G. Lee, Nano-second-scale Mach-Zehnder-based CMOS photonic switch fabrics. J. Lightw. Technol. 35(4) (2016)

    Google Scholar 

  57. T.J. Seok, V. Kopp, D. Neugrosch, J. Henriksson, J. Luo, M.C. Wu, High density optical packaging of high radix silicon photonic switches. in Proceedings of OFC 2017, paper Th5D.7

    Google Scholar 

  58. F. Menard, P. Babin, Aeponyx Inc., private communications, 2017

    Google Scholar 

  59. D. Celo, D.J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, T. Xin, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, E. Bernier, 32x32 Silicon Photonic Switch, OECC 2016

    Google Scholar 

  60. K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, H. Kawashima, Non-duplicate polarization-diversity 8 x 8 Si-wire PILOSS switch integrated with polarization splitter-rotators. Opt. Express 25(10), 10885–10892 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the partners of FP7-IRIS project and they wish to thank Philippe Babin and Francois Menard from Aeponyx Inc. for sharing the information on the MOEMS switch matrix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Testa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Testa, F., Bianchi, A., Romagnoli, M. (2018). Silicon Photonics Switch Matrices: Technologies and Architectures. In: Testa, F., Pavesi, L. (eds) Optical Switching in Next Generation Data Centers. Springer, Cham. https://doi.org/10.1007/978-3-319-61052-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61052-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61051-1

  • Online ISBN: 978-3-319-61052-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics