Skip to main content

Commercial Optical Switches

  • Chapter
  • First Online:
Optical Switching in Next Generation Data Centers

Abstract

Optical switching technologies have many applications in various areas, such as ICT, biomedicine, sensors, and displays. This chapter reviews several main optical switching technologies that have been extensively researched and commercially developed for deployments in telecommunications and datacenter networks. It covers basic knowledge about the principle, structure, performance, and applications of the most commonly developed optical switches including MEMS-based, beam-steering, liquid crystal-based, electro-optic, SOA-based, and thermo-optic categories. These switching technologies have their own characteristics and usage scenarios. Some of them have large scalability but relatively slow switching speed, while some can achieve fast switching speed but limited scalability. Comparison in terms of characteristics of the discussed switch devices is provided to help reader understand their application areas and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. J. Blumenthal, et al., “Integrated photonics for low-power packet networking,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 2, pp. 458–471, (March/April, 2011).

    Google Scholar 

  2. M. Glick, “Optical switching for next generation data centers,” in Proc. International Conference on Photonics in Switching 2009 (PS’09), Pisa, Italy, 2009, pp. 1–4.

    Google Scholar 

  3. A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. OFC/NFOEC 2011, Los Angeles, CA, 2011, paper OTuH2.

    Google Scholar 

  4. A. Wonfor, H. Wang, R.V. Penty, I.H. White, Large port count high-speed optical switch fabric for use within datacenters [invited]. IEEE/OSA Journal of Optical Communication Network 3(8), A32–A39 (Aug. 2011)

    Article  Google Scholar 

  5. T.S. EI-Bawab, Optical Switching (Springer, New York, 2006)

    Book  Google Scholar 

  6. K. W. Markus, “Commercialization of optical MEMS-volume manufacturing approaches,” the 2000 IEEE/LEOS International Conference on Optical MEMS, pp. 7–8, (2000).

    Google Scholar 

  7. V.A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H.B. Chan, M.E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D.T. Neilson, J. Kim, C.R. Giles, D. Bishop, Beam-steering micromirrors for large optical crossconnects. IEEE J. Lightwave Technol 21(3), 634–642 (March 2003)

    Article  Google Scholar 

  8. D.J. Bishop, C.R. Giles, G.P. Austin, The lucent lambda router: MEMS technology of the future here today. IEEE Comm. Mag. 40(3), 75–79 (2002)

    Article  Google Scholar 

  9. J. A. Walker, K. W. Goossen, S. C. Arney, “Mechanical anti-reflection switch (MARS) device for fiber-in-the-loop applications,“Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Smart Pixels/Optical MEMs and Their Applications, IEEE/LEOS 1996 Summer Topical Meetings, pp. 59–60, (1996).

    Google Scholar 

  10. D.E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, IEEE MEMS ‘96, pp. 222–227, Feb 1996.

    Google Scholar 

  11. L. Fan, S. Gloeckner, P. D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J. Gritters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu, A. Husain, “Digital MEMS switch for planar photonic crossconnects,” in OFC’02, Washington, DC, vol. 1, pp. 93–94, 2002.

    Google Scholar 

  12. P. De Dobbelaere, K. Falta, S. Gloeckner, S. Patra, Digital MEMS for optical switching. IEEE Commun. Mag. 40(3), 88–95 (Mar. 2002)

    Article  Google Scholar 

  13. M.C. Wu, O. Solgaard, J.E. Ford, Optical MEMS for lightwave communication. IEEE J. Lightwave Technol 24(12), 4433–4454 (Dec. 2006)

    Article  Google Scholar 

  14. W. C. Dickson, B. P. Staker, Gene Campbell, and William C. Banyai, “64 × 64 3D–MEMS switch control system with robustness to MEMS resonant frequency variation and pointing drift,” in OFC’04, Los Angeles, CA, 2004, pp. ThQ5.

    Google Scholar 

  15. Calient, Product user guide – “S320 Photonic Switch Getting Started Guide”

    Google Scholar 

  16. “Polatis technology – Directlight® Beam-Steering All-Optical Switch” [Online]. Available: http://www.polatis.com/polatis-all-optical-switch-technology-lowest-loss-highest-performance-directlight-beam-steering.asp

  17. “Polatis - series 7000 384 × 384 switch - cross-connect- compact single mode all-optical low loss switch up to 384 × 384 ports.” [Online]. Available: http://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp

  18. R. E. Wagner, J. Cheng, “Electrically Controlled Optical switch for Multimode Fiber Applications,” Applied Optics, Vol. 19, No. 17, pp. 2921–2925, (September 1, 1980).

    Article  Google Scholar 

  19. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999)

    Google Scholar 

  20. J-C. Chiao, K-Y. Wu, and J-Y. Liu, “Liquid-Crystal WDM Optical Signal Processors,” Broad Band Communications for The Internet Era Symposium Digest, 2001 IEEE Emerging Technologies Symposium, pp. 53–57, (2001).

    Google Scholar 

  21. K. Noguchi, Optical free-space multichannel switches composed of liquid-crystal light-modulator arrays and Birefringent crystals. IEEE J. Lightwave Technol. 16(8), 1473–1481 (August, 1998)

    Article  Google Scholar 

  22. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in OFC’06, Anaheim, CA, 2006, pp. OTuF2.

    Google Scholar 

  23. JDSU, White Paper “A performance comparison of WSS switch engine technologies”.

    Google Scholar 

  24. S. Frisken, “Advances in liquid crystal on silicon wavelength selective switching,” in OFC’07, Anaheim, CA, 2007, pp. OWV4.

    Google Scholar 

  25. P. Wall, P. Colbourne, C. Reimer, S. McLaughlin, “WSS switching engine technologies,” in OFC’08, San Diego, CA, 2008, pp. OWC1.

    Google Scholar 

  26. P. Colbourne, B. Collings, “ROADM switching technologies,” in OFC’11, Los Angeles, CA, 2011, pp. OTuD1.

    Google Scholar 

  27. Steve Frisken, Glenn Baxter, Dmitri Abakoumov, Hao Zhou, Ian Clarke, Simon Poole, “Flexible and Grid-less Wavelength Selective Switch using LCOS Technology,” in OFC’11, Los Angeles, CA, 2011, pp. OTuM3.

    Google Scholar 

  28. Finisar, Product data sheet “1 × 9/1 × 20 Flexgrid Wavelength Selective Switch (WSS)”.

    Google Scholar 

  29. E.L. Wooten, K.M. Kissa, A. Yi-Yan, et al., A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics 6(1), 69–82 (2000)

    Article  Google Scholar 

  30. T. Volk, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer Science & Business Media, Berlin, 2008)

    Book  Google Scholar 

  31. Y. Silberberg, P. Perlmutter, J.E. Baran, Digital optical switch. Appl. Phys. Lett. 51(16), 1230–1232 (1987)

    Article  Google Scholar 

  32. K. Suzuki, T. Yamada, M. Ishii, et al., High-speed optical 1× 4 switch based on generalized Mach–Zehnder interferometer with hybrid configuration of silica-based PLC and lithium Niobate phase-shifter Array. IEEE Photon. Technol. Lett. 19(9), 674–676 (2007)

    Article  Google Scholar 

  33. G.L. Li, P.K.L. Yu, I. Tutorial, Optical intensity modulators for digital and analog applications. IEEE J. Lightwave Technol 21(9), 2010–2030 (2003)

    Article  Google Scholar 

  34. M.J. Connelly, Semiconductor Optical Amplifiers (Springer Science & Business Media, New Year, 2007)

    Google Scholar 

  35. K.E. Stubkjaer, Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics 6(6), 1428–1435 (2000)

    Article  Google Scholar 

  36. J.H. Kim, Y.M. Jhon, Y.T. Byun, et al., All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002)

    Article  Google Scholar 

  37. Z. Li, G. Li, Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 18(12), 1341–1343 (June 2006)

    Article  Google Scholar 

  38. R. Hemenway, R. Grzybowski, C. Minkenberg, R. Luijten, Optical-packet-switched interconnect for supercomputer applications. J. Opt. Netw. 3(12), 900–913 (Dec. 2004)

    Article  Google Scholar 

  39. O. Liboiron-Ladouceur et al., The data vortex optical packet switched interconnection network. J. Lightwave Technol. 26(13), 1777–1789 (July 2008)

    Article  Google Scholar 

  40. Y.K. Yeo, Q. Huang, L. Zhou, Large port-count optical crossconnects for data centers, in Proc. International Conference on Photonics in Switching (PS), (2012)

    Google Scholar 

  41. P. Gambini, M. Renaud, C. Guillemot, et al., Transparent optical packet switching: Network architecture and demonstrators in the KEOPS project. IEEE Journal on Selected Areas in Communications 16(7), 1245–1259 (1998)

    Article  Google Scholar 

  42. R. Luijten, W. E. Denzel, R. R. Grzybowski, et al, “Optical interconnection networks: The OSMOSIS project,” in Proc. The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society. 2004.

    Google Scholar 

  43. G. Nakagawa, Y. Kai, S. Yoshida, et al, “High-speed and high-reliability optical selector for 256 × 256 large-scale, nanosecond-order optical switching,” in OFC’08, San Diego, CA, 2008, pp. OWI5.

    Google Scholar 

  44. C. Develder, J. Cheyns, M. Pickavet, et al, “Multistage architectures for optical packet switching using SOA-based broadcast-and-select switches”, in OFC’03, Atlanta, GA, 2003, pp. FS3.

    Google Scholar 

  45. R. Stabile, A. Albores-Mejia, K. A. Williams, “Monolithic active-passive 16× 16 optoelectronic switch,” Optics letters, vol. 37, no. 22, 2012, pp. 4666–4668, 2012.

    Article  Google Scholar 

  46. M.B.J. Diemeer, J.J. Brons, E.S. Trommel, Polymeric optical waveguide switch using the thermooptic effect. J. Lightwave Technol. 7(3), 449–453 (March 1989)

    Article  Google Scholar 

  47. G. Coppola, L. Sirleto, I. Rendina, et al, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Optical Engineering, vol. 50, no. 7, pp. 071112–071112-14, 2011.

    Article  Google Scholar 

  48. R.C. Alferness, Guided-wave devices for optical communication. IEEE J. Quantum Electron. 17(6), 946–959 (June 1981)

    Article  Google Scholar 

  49. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, Y. Ohmori, “Low loss and high extinction ratio strictly non blocking 16 × 16 thermo-optic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” IEEE J. Lightwave Technol., Vol. 19, No. 3, pp. 371–379, March 2001.

    Article  Google Scholar 

  50. T. Chu, H. Yamada, S. Ishida, et al., Compact 1× N thermo-optic switches based on silicon photonic wire waveguides. Opt. Express 13(25), 10109–10114 (2005)

    Article  Google Scholar 

  51. T. Goh, “Recent advances in large-scale silica-based thermo-optic switches,” in Proc. Asia-Pacific Optical and Wireless Communications Conference and Exhibit, pp. 49–56, 2001

    Google Scholar 

  52. W.K. Burns, A.F. Milton, Mode conversion in planar-dielectric separating waveguides. IEEE J. Quantum Electron. 11(1), 32–39 (January 1975)

    Article  Google Scholar 

  53. “Chem Optics Product Digest” [Online]. Available: http://www.chemoptics.co.kr/main/chemoptics_2015brochure.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huang, Q. (2018). Commercial Optical Switches. In: Testa, F., Pavesi, L. (eds) Optical Switching in Next Generation Data Centers. Springer, Cham. https://doi.org/10.1007/978-3-319-61052-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61052-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61051-1

  • Online ISBN: 978-3-319-61052-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics