Advertisement

On the Relation of Computing to the World

  • William J. RapaportEmail author
Chapter
Part of the Philosophical Studies Series book series (PSSP, volume 128)

Abstract

I survey a common theme that pervades the philosophy of computer science (and philosophy more generally): the relation of computing to the world. Are algorithms merely certain procedures entirely characterizable in an “indigenous,” “internal,’ “intrinsic,” “local,” “narrow,” “syntactic” (more generally: “intra-system”), purely-Turing-machine language? Or must algorithms interact with the real world, having a purpose that is expressible only in a language with an “external,” “extrinsic,” “global,” “wide,” “inherited” (more generally: “extra” or “inter-“system) semantics?

Keywords

Philosophy of computer science Algorithms Teleology Computability Turing machines Syntactic semantics Hypercomputation Program verification Computer models 

Notes

Acknowledgments

I am grateful to Robin K. Hill and to Stuart C. Shapiro for discussion and comments on earlier drafts.

References

  1. Anderson, B. L. (2015). Can computational goals inform theories of vision? Topics in Cognitive Science. doi: 10.111/tops.12136.Google Scholar
  2. Bickle, J. (2015). Marr and reductionism. Topics in Cognitive Science. doi: 10.1111/TOPS.12134.
  3. Case, J. (n.d.). Motivating the proof of the Kleene recursion theorem. http://www.eecis.udel.edu/~case/papers/krt-self-repo.pdf. Accessed 20 Mar 2015.
  4. Castañeda, H.-N. (1966). ‘He’: A study in the logic of self-consciousness. Ratio, 8, 130–157.Google Scholar
  5. Chater, N., & Oaksford, M. (2013). Programs as causal models: Speculations on mental programs and mental representation. Cognitive Science, 37(6), 1171–1191.CrossRefGoogle Scholar
  6. Cleland, C. E. (1993). Is the Church-Turing thesis true? Minds and Machines, 3(3), 283–312.CrossRefGoogle Scholar
  7. Cleland, C. E. (2002). On effective procedures. Minds and Machines, 12(2), 159–179.CrossRefGoogle Scholar
  8. Cole, D. (1991). Artificial intelligence and personal identity. Synthese, 88(3), 399–417.CrossRefGoogle Scholar
  9. Copeland, B. J. (1996). What is computation? Synthese, 108, 335–359. Preprint Accessed 18 Mar 2014 at http://www.alanturing.net/turing_archive/pages/pub/what/what.pdf.CrossRefGoogle Scholar
  10. Copeland, B. J. (2002). Hypercomputation. Minds and Machines, 12(4), 461–502.CrossRefGoogle Scholar
  11. Copeland, B. J., & Shagrir, O. (2011). Do accelerating Turing machines compute the uncomputable? Minds and Machines, 21(2), 221–239.CrossRefGoogle Scholar
  12. Davis, M. (2006). What is Turing reducibility? Notices of the AMS, 53(10), 1218–1219. http://www.ams.org/notices/200610/whatis-davis.pdf. Accessed 30 May 2014.Google Scholar
  13. Daylight, E.G. (2013). Towards a historical notion of “Turing—the father of computer science”. http://www.dijkstrascry.com/sites/default/files/papers/Daylightpaper91.pdf. Accessed 7 Apr 2015.
  14. Dennett, D. C. (1971). Intentional systems. Journal of Philosophy, 68:87–106. Reprinted in Daniel C. Dennett, Brainstorms (Montgomery, VT: Bradford Books): 3–22.Google Scholar
  15. Dennett, D. (2009). Darwin’s ‘strange inversion of reasoning’. Proceedings of the National Academy of Science, 106(suppl. 1), 10061–10065. http://www.pnas.org/cgi/doi/10.1073/pnas.0904433106. See also [Dennett, 2013].CrossRefGoogle Scholar
  16. Dennett, D. (2013). Turing’s ‘strange inversion of reasoning’. In S. B. Cooper & J. van Leeuwen (Eds.), Alan Turing: His work and impact (pp. 569–573). Amsterdam: Elsevier. See also [Dennett, 2009].Google Scholar
  17. Dresner, E. (2003). Effective memory and Turing’s model of mind. Journal of Experimental & Theoretical Artificial Intelligence, 15(1), 113–123.CrossRefGoogle Scholar
  18. Dresner, E. (2012). Turing, Matthews and Millikan: Effective memory, dispositionalism and pushmepullyou states. International Journal of Philosophical Studies, 20(4), 461–472.CrossRefGoogle Scholar
  19. Egan, F. (1991). Must psychology be individualistic? Philosophical Review, 100(2), 179–203.CrossRefGoogle Scholar
  20. Egan, F. (1995). Computation and content. Philosophical Review, 104(2), 181–203.CrossRefGoogle Scholar
  21. Elser, V. (2012). In a class by itself. American Scientist, 100, 418–420. http://www.americanscientist.org/bookshelf/pub/in-a-class-by-itself, http://www.americanscientist.org/authors/detail/veit-elser. Both Accessed 16 Dec 2013.
  22. Feferman, S. (1992). Turing’s ‘oracle’: From absolute to relative computability—And back. In J. Echeverria, A. Ibarra, & T. Mormann (Eds.), The space of mathematics: Philosophical, epistemological, and historical Exporations (pp. 314–348). Berlin: Walter de Gruyter.Google Scholar
  23. Fetzer, J. H. (1988). Program verification: The very idea. Communications of the ACM, 31(9), 1048–1063.CrossRefGoogle Scholar
  24. Fodor, J. A. (1978). Tom Swift and his procedural grandmother. Cognition, 6, 229–247. Accessed 11 Dec 2013 from: http://www.nyu.edu/gsas/dept/philo/courses/mindsandmachines/Papers/tomswift.pdf. CrossRefGoogle Scholar
  25. Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3, 63–109.CrossRefGoogle Scholar
  26. Forsythe, G. E. (1968). Computer science and education. In Proceedings IFIP 68 Congress, pp. 92–106.Google Scholar
  27. Goldfain, A. (2006). Embodied enumeration: Appealing to activities for mathematical explanation. In M. Beetz, K. Rajan, M. Thielscher, & R. B. Rusu (Eds.), Cognitive robotics: Papers from the AAAI workshop (CogRob2006), technical report WS-06-03 (pp. 69–76). Menlo Park: AAAI Press.Google Scholar
  28. Goldfain, A. (2008). A computational theory of early mathematical cognition. PhD dissertation (Buffalo: SUNY Buffalo Department of Computer Science & Engineering), http://www.cse.buffalo.edu/sneps/Bibliography/GoldfainDissFinal.pdf.
  29. Grossmann, R. (1974). Meinong. London: Routledge and Kegan Paul.Google Scholar
  30. Hartmanis, J., & Stearns, R. (1965). On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117, 285–306.CrossRefGoogle Scholar
  31. Hill, R. K. (2015). What an algorithm is. Philosophy and Technology, 29(1), 35–59. doi: 10.1007/s13347-014-0184-5.CrossRefGoogle Scholar
  32. Hoffmann, L. (2010). Amir Pnueli: Ahead of his time. Communications of the ACM, 53(1), 22–23. http://cacm.acm.org/magazines/2010/1/55750-amir-pnueli-ahead-of-his-time/fulltext. Accessed 4 Mar 2015.CrossRefGoogle Scholar
  33. Hofstatder, D. R. (1980). Review of [Sloman, 1978]. Bulletin of the American Mathematical Society, 2(2):328–339. http://projecteuclid.org/download/pdf_1/euclid.bams/1183546241.
  34. Horsten, L. (2015). Philosophy of mathematics. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/philosophy-mathematics/#StrNom.
  35. Johnson-Laird, P. N. (1981). Mental models in cognitive science. In D. A. Norman (Ed.), Perspectives on Cognitive Science, chapter 7 (pp. 147–191). Norwood: Ablex.Google Scholar
  36. Kay, K. (2001). Machines and the mind. The Harvard Brain, 8:(Spring). http://www.hcs.harvard.edu/~hsmbb/BRAIN/vol8-spring2001/ai.htm. Accessed 17 Apr 2015.
  37. Knuth, D. E. (1973). The art of computer programming (2nd ed.). Reading: Addison-Wesley.Google Scholar
  38. Lamport, L. (2011). Euclid writes an algorithm: A fairytale. International Journal of Software and Informatics, 5(1–2, Part 1), 7–20. http://research.microsoft.com/en-us/um/people/lamport/pubs/euclid.pdf. Accessed 23 Apr 2015, page references to PDF version.Google Scholar
  39. Lamport, L. (2015). Who builds a house without drawing blueprints? Communications of the ACM, 58(4), 38–41. http://cacm.acm.org/magazines/2015/4/184705-who-builds-a-house-without-drawing-blueprints/fulltext. Accessed 18 Apr 2015.CrossRefGoogle Scholar
  40. Liao, M.-H. (1998). Chinese to English machine translation using SNePS as an interlingua. http://www.cse.buffalo.edu/sneps/Bibliography/tr97-16.pdf. Unpublished doctoral dissertation, Department of Linguistics, SUNY Buffalo.
  41. Lloyd, S., & Ng, Y. J. (2004). Black hole computers. Scientific American, 291(5), 52–61.CrossRefGoogle Scholar
  42. Mahoney, M. S., & Haigh, T. (Eds.). (2011). Histories of computing. Cambridge, MA: Harvard University Press.Google Scholar
  43. Maida, A. S., & Shapiro, S. C. (1982). Intensional concepts in propositional semantic networks. Cognitive Science, 6:291–330. reprinted in Ronald J. Brachman & Hector J. Levesque (Eds.), Readings in Knowledge Representation (Los Altos: Morgan Kaufmann, 1985): 169–189.Google Scholar
  44. Markov, A. (1954). Theory of algorithms. Tr. Mat. Inst. Steklov, 42:1–14. (E. Hewitt, Trans.). in American Mathematical Society Translations, Series 2, Vol. 15 (1960).Google Scholar
  45. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: W.H. Freeman.Google Scholar
  46. Marx, K. (1845). Theses on Feuerbach. http://www.marxists.org/archive/marx/works/1845/theses/theses.htm. Accessed 14 Mar 2015.
  47. McDermott, D. (1980). Artificial intelligence meets natural stupidity. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 143–160). Cambridge, MA: MIT Press. http://www.inf.ed.ac.uk/teaching/courses/irm/mcdermott.pdf.Google Scholar
  48. Moor, J. H. (1978). Three myths of computer science. British Journal for the Philosophy of Science, 29(3), 213–222.CrossRefGoogle Scholar
  49. Morris, C. (1938). Foundations of the theory of signs. Chicago: University of Chicago Press.Google Scholar
  50. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., & Deardeuff, M. (2015). How Amazon web services uses formal methods. Communications of the ACM, 58(4), 66–73. http://delivery.acm.org/10.1145/2700000/2699417/p66-newcombe.pdf. Accessed 18 Apr 2015 and http://m.cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext. Accessed 15 June 2015.CrossRefGoogle Scholar
  51. Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183. Accessed 15 Mar 2014 from http://tinyurl.com/Newell1980. CrossRefGoogle Scholar
  52. Pattis, R. E., Roberts, J., & Stehlik, M. (1995). Karel the robot: A gentle introduction to the art of programming (2nd ed.). New York: Wiley.Google Scholar
  53. Peacocke, C. (1999). Computation as involving content: A response to Egan. Mind & Language, 14(2), 195–202.CrossRefGoogle Scholar
  54. Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University Press.Google Scholar
  55. Perruchet, P., & Vinter, A. (2002). The self-organizing consciousness. Behavioral and Brain Sciences, 25(3), 297–388.Google Scholar
  56. Piccinini, G. (2006). Computation without representation. Philosophical Studies, 137(2), 204–241. Accessed 29 Apr 2014 from: http://www.umsl.edu/~piccininig/Computation_without_Representation.pdf.Google Scholar
  57. Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly, 89, 32–73.CrossRefGoogle Scholar
  58. Piccinini, G. (2011). The physical church-Turing thesis: Modest or bold? British Journal for the Philosophy of Science, 62, 733–769.CrossRefGoogle Scholar
  59. Preston, B. (2013). A philosophy of material culture: Action, function, and mind. New York: Routledge.Google Scholar
  60. Pylyshyn, Z. W. (1984). Computation and Cognition: Towards a foundation for cognitive science. MIT Press: Cambridge, MA. Ch. 3 (“The Relevance of Computation”), pp. 48–86, esp. the section “The Role of Computer Implementation” (pp. 74–78).Google Scholar
  61. Rapaport, W. J. (1981). How to make the world fit our language: An essay in Meinongian semantics. Grazer Philosophische Studien, 14, 1–21.CrossRefGoogle Scholar
  62. Rapaport, W. J. (1986a). Logical foundations for belief representation. Cognitive Science, 10, 371–422.CrossRefGoogle Scholar
  63. Rapaport, W. J. (1985-1986b). Non-existent objects and epistemological ontology. Grazer Philosophische Studien, 25/26:61–95.Google Scholar
  64. Rapaport, W. J. (1986c). Philosophy, artificial intelligence, and the Chinese-room argument. Abacus: The Magazine for the Computer Professional, 3:6–17. Correspondence, Abacus 4 (Winter 1987): 6–7; 4 (Spring): 5–7; http://www.cse.buffalo.edu/~rapaport/Papers/abacus.pdf.
  65. Rapaport, W. J. (1988). Syntactic semantics: Foundations of computational natural-language understanding. In J. H. Fetzer (Ed.), Aspects of artificial intelligence, (pp. 81–131). Dordrecht: Kluwer Academic Publishers. Reprinted with numerous errors in Eric Dietrich (Ed.) (1994), Thinking machines and virtual persons: Essays on the intentionality of machines (pp. 225–273). San Diego: Academic.Google Scholar
  66. Rapaport, W. J. (1990). Computer processes and virtual persons: Comments on Cole’s ‘Artificial intelligence and personal identity’. Technical Report 90–13, SUNY Buffalo Department of Computer Science, Buffalo. http://www.cse.buffalo.edu/~rapaport/Papers/cole.tr.17my90.pdf
  67. Rapaport, W. J. (1993). Because mere calculating isn’t thinking: Comments on Hauser’s ‘why isn’t my pocket calculator a thinking thing?’. Minds and Machines, 3, 11–20. Preprint online at http://www.cse.buffalo.edu/~rapaport/Papers/joint.pdf.CrossRefGoogle Scholar
  68. Rapaport, W. J. (1995). Understanding understanding: Syntactic semantics and computational cognition. In J. E. Tomberlin (Ed.), AI, connectionism, and philosophical psychology, (pp. 49–88). Atascadero: Ridgeview. Philosophical perspectives, Vol. 9; reprinted in Toribio, J, & Clark, A (Eds.) (1998), Language and meaning in cognitive science: Cognitive issues and semantic theory, Artificial intelligence and cognitive science: Conceptual issues, vol. 4 (pp. 73–88). New York: Garland..Google Scholar
  69. Rapaport, W. J. (1999). Implementation is semantic interpretation. The Monist, 82, 109–130.CrossRefGoogle Scholar
  70. Rapaport, W. J. (2000). How to pass a Turing test: Syntactic semantics, natural-language understanding, and first-person cognition. Journal of Logic, Language, and Information, 9(4), 467–490.CrossRefGoogle Scholar
  71. Rapaport, W. J. (2002). Holism, conceptual-role semantics, and syntactic semantics. Minds and Machines, 12(1), 3–59.CrossRefGoogle Scholar
  72. Rapaport, W. J. (2005a). Implemention is semantic interpretation: Further thoughts. Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 385–417.CrossRefGoogle Scholar
  73. Rapaport, W. J. (2005b). Philosophy of computer science: An introductory course. Teaching Philosophy, 28(4), 319–341. http://www.cse.buffalo.edu/~rapaport/philcs.html.CrossRefGoogle Scholar
  74. Rapaport, W. J. (2006). How Helen Keller used syntactic semantics to escape from a Chinese room. Minds and Machines, 16, 381–436.CrossRefGoogle Scholar
  75. Rapaport, W. J. (2012). Semiotic systems, computers, and the mind: How cognition could be computing. International Journal of Signs and Semiotic Systems, 2(1), 32–71.CrossRefGoogle Scholar
  76. Rapaport, W. J. (2015). Philosophy of computer science. Current draft in progress at http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf
  77. Rapaport, W. J., & Kibby, M. W. (2007). Contextual vocabulary acquisition as computational philosophy and as philosophical computation. Journal of Experimental & Theoretical Artificial Intelligence, 19(1), 1–17.CrossRefGoogle Scholar
  78. Rapaport, W. J., & Kibby, M. W. (2014). Contextual vocabulary acquisition: From algorithm to curriculum. In A. Palma (Ed.), Castañeda and his guises: Essays on the work of Hector-Neri Castañeda (pp. 107–150). Berlin: Walter de Gruyter.Google Scholar
  79. Rapaport, W. J., Shapiro, S. C., & Wiebe, J. M. (1997). Quasi-indexicals and knowledge reports. Cognitive Science, 21, 63–107.CrossRefGoogle Scholar
  80. Rescorla, M. (2007). Church’s thesis and the conceptual analysis of computability. Notre Dame Journal of Formal Logic, 48(2), 253–280. Preprint. Accessed 29 Apr 2014 at http://www.philosophy.ucsb.edu/people/profiles/faculty/cvs/papers/church2.pdf. CrossRefGoogle Scholar
  81. Rescorla, M. (2012). Are computational transitions sensitive to semantics? Australian Journal of Philosophy, 90(4), 703–721. Preprint at http://www.philosophy.ucsb.edu/docs/faculty/papers/formal.pdf. Accessed 30 Oct 2014.CrossRefGoogle Scholar
  82. Rescorla, M. (2013). Against structuralist theories of computational implementation. British Journal for the Philosophy of Science, 64(4), 681–707. Preprint. Accessed 31 Oct 2014 at http://philosophy.ucsb.edu/docs/faculty/papers/against.pdf. CrossRefGoogle Scholar
  83. Rescorla, M. (2014). The causal relevance of content to computation. Philosophy and Phenomenological Research, 88(1), 173–208. Preprint at http://www.philosophy.ucsb.edu/people/profiles/faculty/cvs/papers/causalfinal.pdf. Accessed 7 May 2014.CrossRefGoogle Scholar
  84. Richards, R. J. (2009). The descent of man. American Scientist, 97(5), 415–417. http://www.americanscientist.org/bookshelf/pub/the-descent-of-man. Accessed 20 Apr 2015.CrossRefGoogle Scholar
  85. Schagrin, M. L., Rapaport, W. J., & Dipert, R. R. (1985). Logic: A computer approach. New York: McGraw-Hill.Google Scholar
  86. Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417–457.CrossRefGoogle Scholar
  87. Searle, J. R. (1982). The myth of the computer. New York Review of Books, pp. 3–6. Cf. correspondence, same journal, 24 June 1982, pp. 56–57.Google Scholar
  88. Searle, J. R. (1990). Is the brain a digital computer? Proceedings and Addresses of the American Philosophical Association, 64(3), 21–37.CrossRefGoogle Scholar
  89. Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153, 393–416. Preprint at http://edelstein.huji.ac.il/staff/shagrir/papers/Why we view the brain as a computer.pdf. Accessed 25 Mar 2014.CrossRefGoogle Scholar
  90. Shagrir, O., & Bechtel, W. (2015). Marr’s computational-level theories and delineating phenomena. In D. Kaplan (Ed.), Integrating psychology and neuroscience: Prospects and problems. Oxford: Oxford University Press.Google Scholar
  91. Shapiro, S. C., & Rapaport, W. J. (1987). SNePS considered as a fully intensional propositional semantic network. In N. Cercone & G. McCalla (Eds.), The knowledge frontier: Essays in the representation of knowledge (pp. 262–315). New York: Springer.CrossRefGoogle Scholar
  92. Shapiro, S. C., & Rapaport, W. J. (1991). Models and minds: Knowledge representation for natural-language competence. In R. Cummins & J. Pollock (Eds.), Philosophy and AI: Essays at the Interface (pp. 215–259). Cambridge, MA: MIT Press.Google Scholar
  93. Simon, H. A. (1996). Computational theories of cognition. In W. O’Donohue & R. F. Kitchener (Eds.), The philosophy of psychology (pp. 160–172). London: SAGE Publications.CrossRefGoogle Scholar
  94. Simon, H. A., & Newell, A. (1962). Simulation of human thinking. In M. Greenberger (Ed.), Computers and the world of the future (pp. 94–114). Cambridge, MA: MIT Press.Google Scholar
  95. Sloman, A. (1978). The computer revolution in philosophy: Philosophy, science and models of mind. Atlantic Highlands: Humanities Press. http://www.cs.bham.ac.uk/research/projects/cogaff/crp/.Google Scholar
  96. Sloman, A. (2002). The irrelevance of Turing machines to AI. In M. Scheutz (Ed.), Computationalism: New directions (pp. 87–127). Cambridge, MA: MIT Press. http://www.cs.bham.ac.uk/research/projects/cogaff/sloman.turing.irrelevant.pdf. Accessed 21 Feb 2014. Page references are to the online preprint.Google Scholar
  97. Smith, B. C. (1985). Limits of correctness in computers. ACM SIGCAS Computers and Society, 14–15(1–4):18–26. Also published as Technical Report CSLI-85-36 (Stanford: Center for the Study of Language & Information); reprinted in Charles Dunlop & Rob Kling (Eds.), Computerization and controversy (San Diego: Academic, 1991): 632–646; reprinted in Timothy R. Colburn, James H. Fetzer, & Terry L. Rankin (Eds.), Program Verification: Fundamental Issues in Computer Science (Dordrecht: Kluwer Academic Publishers, 1993): 275–293.Google Scholar
  98. Smith, B. C. (1987). The correspondence continuum. Technical Report CSLI-87-71, Center for the Study of Language & Information, Stanford.Google Scholar
  99. Soare, R. I. (2009). Turing oracle machines, online computing, andthree displacements in computability theory. Ann. Pure Appl. Logic, 160, 368–399.CrossRefGoogle Scholar
  100. Soare, R. I. (2013). Interactive computing and relativized computability. In B. J. Copeland, C. J. Posy, & O. Shagrir (Eds.), Computability: Turing, Gödel, church, and beyond (pp. 203–260). Cambridge, MA: MIT Press. A slightly different version appeared as [Soare, 2009].Google Scholar
  101. Staples, M. (2015). Critical rationalism and engineering: Methodology. Synthese, 192(1), 337–362. Preprint at http://www.nicta.com.au/pub?doc=7747. Accessed 11 Feb 2015.CrossRefGoogle Scholar
  102. Suber, P. (1988). What is software? Journal of Speculative Philosophy, 2(2), 89–119. http://www.earlham.edu/~peters/writing/software.htm. Accessed 21 May 2012.Google Scholar
  103. Tedre, M., & Sutinen, E. (2008). Three traditions of computing: What educators should know. Computer Science Education, 18(3), 153–170.CrossRefGoogle Scholar
  104. Thagard, P. (1984). Computer programs as psychological theories. In O. Neumaier (Ed.), Mind, language and society (pp. 77–84). Vienna: Conceptus-Studien.Google Scholar
  105. Thomason, R. H. (2003). Dynamic contextual intensional logic: Logical foundations and an application. In P. Blackburn (Ed.), CONTEXT 2003: Lecture notes in artificial intelligence 2680 (pp. 328–341). Berlin: Springer. http://link.springer.com/chapter/10.1007/3-540-44958-2 26#page-1. Accessed 3 Dec 2013.Google Scholar
  106. Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, Ser. 2, 42, 230–265.Google Scholar
  107. Wegner, P. (1995). Interaction as a basis for empirical computer science. ACM Computing Surveys, 27(1), 45–48.CrossRefGoogle Scholar
  108. Weinberg, S. (2002). Is the universe a computer? New York Review of Books, 49(16), 43–47.Google Scholar
  109. Winston, P. H. (1977). Artificial Intelligence. Reading: Addison-Wesley.Google Scholar
  110. Wolfram, S. (2002). A new kind of science. Champaign: Wolfram Media.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Department of Philosophy, Department of Linguistics, and Center for Cognitive ScienceUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations