Skip to main content

Sex Differences in Exercise Performance and Exercise Training Among Persons with Type 2 Diabetes

  • Chapter
  • First Online:

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Exercise has long been recommended to improve many health parameters in those with diabetes, including glycemic control, weight management, certain cardiovascular measures, and body composition. Recent research suggests that sex differences exist in baseline exercise levels, exercise capacity, exercise preference, and a range of cardiovascular parameters associated with physical activity. Men with type 2 diabetes (T2DM) have more self-reported exercise and physical activity prior to an intervention but are less likely to respond to exercise counseling than women. Both sexes also have different preferences in exercise type. Prior to training, women with diabetes have lower exercise performance (i.e., peak VO2 and/or METs) than men with diabetes. However, after exercise training, women with T2DM tend to have greater improvements in exercise performance while men may have greater improvements in body composition and certain cardiovascular parameters (i.e., diastolic blood pressure recovery, improved heart rate variability). Sex differences in metabolic measures after an exercise intervention are less clear based on current evidence. While sex differences in exercise performance and exercise training are evident, additional research into understanding the pathophysiology and scope of these sex differences in exercise among persons with T2DM is clearly needed. Further understanding of these differences will allow for individualized care and patient-centered exercise interventions in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–67.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Regensteiner JG. Type 2 diabetes mellitus and cardiovascular exercise performance. Rev Endocr Metab Disord. 2004;5(3):269–76.

    Article  PubMed  Google Scholar 

  3. Mendes R, Sousa N, Almeida A, et al. Exercise prescription for patients with type 2 diabetes-a synthesis of international recommendations: narrative review. Br J Sports med. 2015;50(22):1379–81.

    Article  PubMed  Google Scholar 

  4. Jakicic JM, Gregg E, Knowler W, et al. Activity patterns of obese adults with type 2 diabetes in the look AHEAD study. Med Sci Sports Exerc. 2010;42(11):1995–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chiu CJ, Wray LA. Gender differences in functional limitations in adults living with type 2 diabetes: biobehavioral and psychosocial mediators. Ann Behav med. 2011;41(1):71–82.

    Article  PubMed  Google Scholar 

  6. Loprinzi PD, Pariser G. Physical activity intensity and biological markers among adults with diabetes: considerations by age and gender. J Diabetes Complicat. 2013;27(2):134–40.

    Article  PubMed  Google Scholar 

  7. Barrett JE, Plotnikoff RC, Courneya KS, Raine KD. Physical activity and type 2 diabetes: exploring the role of gender and income. Diabetes Educ. 2007;33(1):128–43.

    Article  PubMed  Google Scholar 

  8. Gavin JR 3rd, Fox KM, Grandy S. Race/ethnicity and gender differences in health intentions and behaviors regarding exercise and diet for adults with type 2 diabetes: a cross-sectional analysis. BMC Public Health. 2011;11:533. 2458-11-533

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pearte CA, Gary TL, Brancati FL. Correlates of physical activity levels in a sample of urban African Americans with type 2 diabetes. Ethn Dis. 2004;14(2):198–205.

    PubMed  Google Scholar 

  10. Karjalainen J, Peltonen M, Vanhala M, et al. Leisure time physical activity in individuals with screen-detected type 2 diabetes compared to those with known type 2 diabetes. Diabetes Res Clin Pract. 2008;81(1):110–6.

    Article  PubMed  Google Scholar 

  11. Palakodeti S, Uratsu CS, Schmittdiel JA, Grant RW. Changes in physical activity among adults with diabetes: a longitudinal cohort study of inactive patients with type 2 diabetes who become physically active. Diabet Med. 2015;32(8):1051–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCarthy MM, Davey J, Wackers FJ, Chyun DA. Predictors of physical inactivity in men and women with type 2 diabetes from the detection of ischemia in asymptomatic diabetics (DIAD) study. Diabetes Educ. 2014;40(5):678–87.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lipscombe C, Smith KJ, Gariepy G, Schmitz N. Gender differences in the relationship between anxiety symptoms and physical inactivity in a community-based sample of adults with type 2 diabetes. Can J Diabetes. 2014;38(6):444–50.

    Article  PubMed  Google Scholar 

  14. Lipscombe C, Smith KJ, Gariepy G, Schmitz N. Gender differences in the association between lifestyle behaviors and diabetes distress in a community sample of adults with type 2 diabetes. J Diabetes. 2015;8(2):269–78.

    Article  PubMed  Google Scholar 

  15. Forbes CC, Plotnikoff RC, Courneya KS, Boule NG. Physical activity preferences and type 2 diabetes: exploring demographic, cognitive, and behavioral differences. Diabetes Educ. 2010;36(5):801–15.

    Article  PubMed  Google Scholar 

  16. O’Connor E, Kiely C, O’Shea D, Green S, Egana M. Similar level of impairment in exercise performance and oxygen uptake kinetics in middle-aged men and women with type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2012;303(1):R70–6.

    Article  PubMed  CAS  Google Scholar 

  17. Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28(7):1643–8.

    Article  PubMed  Google Scholar 

  18. Huebschmann AG, Kohrt WM, Herlache L, et al. Type 2 diabetes exaggerates exercise effort and impairs exercise performance in older women. BMJ Open Diabetes Res Care. 2015;3(1):e000124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Regensteiner JG, Bauer TA, Huebschmann AG, et al. Sex differences in the effects of type 2 diabetes on exercise performance. Med Sci Sports Exerc. 2015;47(1):58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green S, Egana M, Baldi JC, Lamberts R, Regensteiner JG. Cardiovascular control during exercise in type 2 diabetes mellitus. J Diabetes Res. 2015;2015:654204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Harms CA. Does gender affect pulmonary function and exercise capacity? Respir Physiol Neurobiol. 2006;151(2–3):124–31.

    Article  PubMed  Google Scholar 

  22. Regensteiner JG, Bauer TA, Reusch JE, et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. J Appl Physiol (1985). 1998;85(1):310–7.

    CAS  Google Scholar 

  23. Ugur-Altun B, Altun A, Tatli E, Tugrul A. Factors related to exercise capacity in asymptomatic middle-aged type 2 diabetic patients. Diabetes Res Clin Pract. 2005;67(2):130–6.

    Article  PubMed  Google Scholar 

  24. Curtis JM, Horton ES, Bahnson J, et al. Prevalence and predictors of abnormal cardiovascular responses to exercise testing among individuals with type 2 diabetes: the look AHEAD (action for health in diabetes) study. Diabetes Care. 2010;33(4):901–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adekunle AE, Akintomide AO. Gender differences in the variables of exercise treadmill test in type 2 diabetes mellitus. Ann Afr med. 2012;11(2):96–102.

    Article  PubMed  Google Scholar 

  26. Ribisl PM, Lang W, Jaramillo SA, et al. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes: the look AHEAD clinical trial. Diabetes Care. 2007;30(10):2679–84.

    Article  PubMed  Google Scholar 

  27. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36.

    Article  PubMed  Google Scholar 

  28. Kalyani RR, Lazo M, Ouyang P, et al. Sex differences in diabetes and risk of incident coronary artery disease in healthy young and middle-aged adults. Diabetes Care. 2014;37(3):830–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Iijima K, Iimuro S, Shinozaki T, et al. Lower physical activity is a strong predictor of cardiovascular events in elderly patients with type 2 diabetes mellitus beyond traditional risk factors: the Japanese elderly diabetes intervention trial. Geriatr Gerontol Int. 2012;12(Suppl 1):77–87.

    Article  PubMed  Google Scholar 

  31. Filipovsky J, Ducimetiere P, Safar ME. Prognostic significance of exercise blood pressure and heart rate in middle-aged men. Hypertension. 1992;20(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  32. Scott JA, Coombes JS, Prins JB, Leano RL, Marwick TH, Sharman JE. Patients with type 2 diabetes have exaggerated brachial and central exercise blood pressure: relation to left ventricular relative wall thickness. Am J Hypertens. 2008;21(6):715–21.

    Article  PubMed  Google Scholar 

  33. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341(18):1351–7.

    Article  CAS  PubMed  Google Scholar 

  34. Soleimani A, Abbasi K, Nejatian M, et al. Effect of gender and type 2 diabetes mellitus on heart rate recovery in patients with coronary artery disease after cardiac rehabilitation. Minerva Endocrinol. 2010;35(1):1–7.

    CAS  PubMed  Google Scholar 

  35. Kuch B, von Scheidt W, Peter W, et al. Sex-specific determinants of left ventricular mass in pre-diabetic and type 2 diabetic subjects: the Augsburg diabetes family study. Diabetes Care. 2007;30(4):946–52.

    Article  PubMed  Google Scholar 

  36. Ha JW, Lee HC, Park S, et al. Gender-related difference in left ventricular diastolic elastance during exercise in patients with diabetes mellitus. Circ J. 2008;72(9):1443–8.

    Article  PubMed  Google Scholar 

  37. Bauer TA, Reusch JE, Levi M, Regensteiner JG. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care. 2007;30(11):2880–5.

    Article  PubMed  Google Scholar 

  38. Kiely C, O’Connor E, O’Shea D, Green S, Egana M. Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. J Appl Physiol (1985). 2014;117(7):755–64.

    Article  Google Scholar 

  39. Kanaley JA, Goulopoulou S, Franklin R, et al. Exercise training improves hemodynamic recovery to isometric exercise in obese men with type 2 diabetes but not in obese women. Metabolism. 2012;61(12):1739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stein PK, Kleiger RE. Insights from the study of heart rate variability. Annu Rev Med. 1999;50:249–61.

    Article  CAS  PubMed  Google Scholar 

  41. Bhagyalakshmi S, Nagaraja H, Anupama B, et al. Effect of supervised integrated exercise on heart rate variability in type 2 diabetes mellitus. Kardiol Pol. 2007;65(4):363–8. discussion 369

    PubMed  Google Scholar 

  42. Koster A, Schaap LA. The effect of type 2 diabetes on body composition of older adults. Clin Geriatr med. 2015;31(1):41–9. vii–viii

    Article  PubMed  Google Scholar 

  43. Sinclair AJ, Conroy SP, Bayer AJ. Impact of diabetes on physical function in older people. Diabetes Care. 2008;31(2):233–5.

    Article  PubMed  Google Scholar 

  44. Neeland IJ, Turer AT, Ayers CR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308(11):1150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  46. Targher G, Bertolini L, Padovani R, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30(5):1212–8.

    Article  PubMed  Google Scholar 

  47. Park SW, Goodpaster BH, Lee JS, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Garaulet M, Perex-Llamas F, Fuente T, Zamora S, Tebar FJ. Anthropometric, computed tomography and fat cell data in an obese population: relationship with insulin, leptin, tumor necrosis factor-alpha, sex hormone-binding globulin and sex hormones. Eur J Endocrinol. 2000;143(5):657–66.

    Article  CAS  PubMed  Google Scholar 

  49. Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6(Suppl 1):60–75.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Despres JP. Is visceral obesity the cause of the metabolic syndrome? Ann Med. 2006;38(1):52–63.

    Article  CAS  PubMed  Google Scholar 

  51. Cote M, Mauriege P, Bergeron J, et al. Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein and lipid levels in men. J Clin Endocrinol Metab. 2005;90(3):1434–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol. 2001;21(6):961–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kanaley JA, Sames C, Swisher L, et al. Abdominal fat distribution in pre- and postmenopausal women: the impact of physical activity, age, and menopausal status. Metabolism. 2001;50(8):976–82.

    Article  CAS  PubMed  Google Scholar 

  54. Derby CA, Zilber S, Brambilla D, Morales KH, McKinlay JB. Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts male ageing study. Clin Endocrinol. 2006;65(1):125–31.

    Article  CAS  Google Scholar 

  55. Carmina E, Bucchieri S, Esposito A, et al. Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab. 2007;92(7):2500–5.

    Article  CAS  PubMed  Google Scholar 

  56. Puder JJ, Varga S, Kraenzlin M, De Geyter C, Keller U, Muller B. Central fat excess in polycystic ovary syndrome: relation to low-grade inflammation and insulin resistance. J Clin Endocrinol Metab. 2005;90(11):6014–21.

    Article  CAS  PubMed  Google Scholar 

  57. Escobar-Morreale HF, San Millan JL. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab. 2007;18(7):266–72.

    Article  CAS  PubMed  Google Scholar 

  58. Kuk JL, Ross R. Influence of sex on total and regional fat loss in overweight and obese men and women. Int J Obes. 2009;33(6):629–34.

    Article  CAS  Google Scholar 

  59. McTiernan A, Sorensen B, Irwin ML, et al. Exercise effect on weight and body fat in men and women. Obesity (Silver Spring). 2007;15(6):1496–512.

    Article  Google Scholar 

  60. Wilmore JH, Despres JP, Stanforth PR, et al. Alterations in body weight and composition consequent to 20 wk of endurance training: the HERITAGE family study. Am J Clin Nutr. 1999;70(3):346–52.

    CAS  PubMed  Google Scholar 

  61. Dobrosielski DA, Barone Gibbs B, Chaudhari S, Ouyang P, Silber HA, Stewart KJ. Effect of exercise on abdominal fat loss in men and women with and without type 2 diabetes. BMJ Open. 2013;3(11):e003897. -2013-003897

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee S, Kuk JL, Davidson LE, et al. Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without type 2 diabetes. J Appl Physiol (1985). 2005;99(3):1220–5.

    Article  Google Scholar 

  63. Gallagher D, Heshka S, Kelley DE, et al. Changes in adipose tissue depots and metabolic markers following a 1-year diet and exercise intervention in overweight and obese patients with type 2 diabetes. Diabetes Care. 2014;37(12):3325–32.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jung JY, Han KA, Ahn HJ, et al. Effects of aerobic exercise intensity on abdominal and thigh adipose tissue and skeletal muscle attenuation in overweight women with type 2 diabetes mellitus. Diabetes Metab J. 2012;36(3):211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care. 2003;26(11):2977–82.

    Article  PubMed  Google Scholar 

  66. Pownall HJ, Bray GA, Wagenknecht LE, et al. Changes in body composition over 8 years in a randomized trial of a lifestyle intervention: the look AHEAD study. Obesity (Silver Spring). 2015;23(3):565–72.

    Article  Google Scholar 

  67. Fujimoto WY, Jablonski KA, Bray GA, et al. Body size and shape changes and the risk of diabetes in the diabetes prevention program. Diabetes. 2007;56(6):1680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vanninen E, Uusitupa M, Siitonen O, Laitinen J, Lansimies E. Habitual physical activity, aerobic capacity and metabolic control in patients with newly-diagnosed type 2 (non-insulin-dependent) diabetes mellitus: effect of 1-year diet and exercise intervention. Diabetologia. 1992;35(4):340–6.

    Article  CAS  PubMed  Google Scholar 

  69. Albu JB, Heilbronn LK, Kelley DE, et al. Metabolic changes following a 1-year diet and exercise intervention in patients with type 2 diabetes. Diabetes. 2010;59(3):627–33.

    Article  CAS  PubMed  Google Scholar 

  70. Adeniyi AF, Uloko AE, Ogwumike OO, Sanya AO, Fasanmade AA. Time course of improvement of metabolic parameters after a 12 week physical exercise programme in patients with type 2 diabetes: the influence of gender in a Nigerian population. Biomed Res Int. 2013;2013:310574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boule NG, Weisnagel SJ, Lakka TA, et al. Effects of exercise training on glucose homeostasis: the HERITAGE family study. Diabetes Care. 2005;28(1):108–14.

    Article  PubMed  Google Scholar 

  72. Kraemer RR, Kraemer GR, Acevedo EO, et al. Effects of aerobic exercise on serum leptin levels in obese women. Eur J Appl Physiol Occup Physiol. 1999;80(2):154–8.

    Article  CAS  PubMed  Google Scholar 

  73. Landt M, Lawson GM, Helgeson JM, et al. Prolonged exercise decreases serum leptin concentrations. Metabolism. 1997;46(10):1109–12.

    Article  CAS  PubMed  Google Scholar 

  74. Kanaley JA, Fenicchia LM, Miller CS, et al. Resting leptin responses to acute and chronic resistance training in type 2 diabetic men and women. Int J Obes Relat Metab Disord. 2001;25(10):1474–80.

    Article  CAS  PubMed  Google Scholar 

  75. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–9.

    Article  CAS  PubMed  Google Scholar 

  76. Jarvandi S, Davidson NO, Jeffe DB, Schootman M. Influence of lifestyle factors on inflammation in men and women with type 2 diabetes: results from the national health and nutrition examination survey, 1999–2004. Ann Behav Med. 2012;44(3):399–407.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999;99(13):1726–32.

    Article  CAS  PubMed  Google Scholar 

  78. Sponder M, Dangl D, Kampf S, Fritzer-Szekeres M, Strametz-Juranek J. Exercise increases serum endostatin levels in female and male patients with diabetes and controls. Cardiovasc Diabetol. 2014;13:6–2840. 13–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Younossi ZM, Stepanova M, Negro F, et al. Nonalcoholic fatty liver disease in lean individuals in the united states. Medicine (Baltimore). 2012;91(6):319–27.

    Article  Google Scholar 

  80. Tamura Y, Tanaka Y, Sato F, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2005;90(6):3191–6.

    Article  CAS  PubMed  Google Scholar 

  81. Lazo M, Solga SF, Horska A, et al. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. Diabetes Care. 2010;33(10):2156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bozzetto L, Prinster A, Annuzzi G, et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care. 2012;35(7):1429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bacchi E, Negri C, Targher G, et al. Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 randomized trial). Hepatology. 2013;58(4):1287–95.

    Article  CAS  PubMed  Google Scholar 

  84. Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30(4):911–7.

    Article  CAS  PubMed  Google Scholar 

  85. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.

    Article  CAS  PubMed  Google Scholar 

  86. Mather KJ, Kim C, Christophi CA, et al. Steroid sex hormones, sex hormone-binding globulin, and diabetes incidence in the diabetes prevention program. J Clin Endocrinol Metab. 2015;100(10):3778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu J, Zhang A, Yang S, et al. Combined effects of sex hormone-binding globulin and sex hormones on risk of incident type 2 diabetes. J Diabetes. 2015;8(4):508–15.

    Article  PubMed  CAS  Google Scholar 

  88. Antonio L, Wu FC, O’Neill TW, et al. Associations between sex steroids and the development of metabolic syndrome: a longitudinal study in European men. J Clin Endocrinol Metab. 2015;100(4):1396–404.

    Article  CAS  PubMed  Google Scholar 

  89. Jasuja GK, Travison TG, Davda M, et al. Circulating estrone levels are associated prospectively with diabetes risk in men of the Framingham heart study. Diabetes Care. 2013;36(9):2591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonnet F, Velayoudom Cephise FL, Gautier A, et al. Role of sex steroids, intrahepatic fat and liver enzymes in the association between SHBG and metabolic features. Clin Endocrinol. 2013;79(4):517–22.

    Article  CAS  Google Scholar 

  91. Dhindsa S, Furlanetto R, Vora M, Ghanim H, Chaudhuri A, Dandona P. Low estradiol concentrations in men with subnormal testosterone concentrations and type 2 diabetes. Diabetes Care. 2011;34(8):1854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Colangelo LA, Ouyang P, Liu K, et al. Association of endogenous sex hormones with diabetes and impaired fasting glucose in men: multi-ethnic study of atherosclerosis. Diabetes Care. 2009;32(6):1049–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vikan T, Schirmer H, Njolstad I, Svartberg J. Low testosterone and sex hormone-binding globulin levels and high estradiol levels are independent predictors of type 2 diabetes in men. Eur J Endocrinol. 2010;162(4):747–54.

    Article  CAS  PubMed  Google Scholar 

  94. Dhindsa S, Ghanim H, Batra M, et al. Insulin resistance and inflammation in hypogonadotropic hypogonadism and their reduction after testosterone replacement in men with type 2 diabetes. Diabetes Care. 2016;39(1):82–91.

    Article  PubMed  Google Scholar 

  95. Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Rancho Bernardo Study. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care. 2002;25(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  96. Ding EL, Song Y, Manson JE, Rifai N, Buring JE, Liu S. Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia. 2007;50(10):2076–84.

    Article  CAS  PubMed  Google Scholar 

  97. Kalyani RR, Franco M, Dobs AS, et al. The association of endogenous sex hormones, adiposity, and insulin resistance with incident diabetes in postmenopausal women. J Clin Endocrinol Metab. 2009;94(11):4127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krishnan S, Gustafson MB, Campbell C, Gaikwad NW, Keim NL. Association between circulating endogenous androgens and insulin sensitivity changes with exercise training in midlife women. Menopause. 2014;21(9):967–74.

    Article  PubMed  Google Scholar 

  99. Golden SH, Dobs AS, Vaidya D, et al. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin Endocrinol Metab. 2007;92(4):1289–95.

    Article  CAS  PubMed  Google Scholar 

  100. Chen BH, Brennan K, Goto A, et al. Sex hormone-binding globulin and risk of clinical diabetes in American black, Hispanic, and Asian/pacific islander postmenopausal women. Clin Chem. 2012;58(10):1457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fenske B, Kische H, Gross S, et al. Endogenous androgens and sex hormone-binding globulin in women and risk of metabolic syndrome and type 2 diabetes. J Clin Endocrinol Metab. 2015;100(12):4595–603.

    Article  CAS  PubMed  Google Scholar 

  102. Stanik S, Dornfeld LP, Maxwell MH, Viosca SP, Korenman SG. The effect of weight loss on reproductive hormones in obese men. J Clin Endocrinol Metab. 1981;53(4):828–32.

    Article  CAS  PubMed  Google Scholar 

  103. Pritchard J, Despres JP, Gagnon J, et al. Plasma adrenal, gonadal, and conjugated steroids following long-term exercise-induced negative energy balance in identical twins. Metabolism. 1999;48(9):1120–7.

    Article  CAS  PubMed  Google Scholar 

  104. Kaukua J, Pekkarinen T, Sane T, Mustajoki P. Sex hormones and sexual function in obese men losing weight. Obes Res. 2003;11(6):689–94.

    Article  CAS  PubMed  Google Scholar 

  105. Niskanen L, Laaksonen DE, Punnonen K, Mustajoki P, Kaukua J, Rissanen A. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes Metab. 2004;6(3):208–15.

    Article  CAS  PubMed  Google Scholar 

  106. Khoo J, Piantadosi C, Worthley S, Wittert GA. Effects of a low-energy diet on sexual function and lower urinary tract symptoms in obese men. Int J Obes. 2010;34(9):1396–403.

    Article  CAS  Google Scholar 

  107. Hammoud A, Gibson M, Hunt SC, et al. Effect of roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab. 2009;94(4):1329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Globerman H, Shen-Orr Z, Karnieli E, Aloni Y, Charuzi I. Inhibin B in men with severe obesity and after weight reduction following gastroplasty. Endocr Res. 2005;31(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  109. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

    Article  PubMed  Google Scholar 

  110. Samavat J, Facchiano E, Lucchese M, et al. Hypogonadism as an additional indication for bariatric surgery in male morbid obesity? Eur J Endocrinol. 2014;171(5):555–60.

    Article  CAS  PubMed  Google Scholar 

  111. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab. 2011;96(8):2341–53.

    Article  CAS  PubMed  Google Scholar 

  112. Stephens NA, Sparks LM. Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail? J Clin Endocrinol Metab. 2015;100(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  113. An P, Teran-Garcia M, Rice T, et al. Genome-wide linkage scans for prediabetes phenotypes in response to 20 weeks of endurance exercise training in non-diabetic whites and blacks: the HERITAGE family study. Diabetologia. 2005;48(6):1142–9.

    Article  CAS  PubMed  Google Scholar 

  114. Fredriksson J, Anevski D, Almgren P, et al. Variation in GYS1 interacts with exercise and gender to predict cardiovascular mortality. PLoS One. 2007;2(3):e285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Cloix L, Caille A, Helmer C, et al. Physical activity at home, at leisure, during transportation and at work in French adults with type 2 diabetes: the ENTRED physical activity study. Diabetes Metab. 2015;41(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  116. Schneider SH, Khachadurian AK, Amorosa LF, Clemow L, Ruderman NB. Ten-year experience with an exercise-based outpatient life-style modification program in the treatment of diabetes mellitus. Diabetes Care. 1992;15(11):1800–10.

    Article  CAS  PubMed  Google Scholar 

  117. Look AHEAD Research Group, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J med. 2013;369(2):145–54.

    Article  CAS  Google Scholar 

  118. Chudyk A, Petrella RJ. Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care. 2011;34(5):1228–37.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hawkins VN, Foster-Schubert K, Chubak J, et al. Effect of exercise on serum sex hormones in men: a 12-month randomized clinical trial. Med Sci Sports Exerc. 2008;40(2):223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Campbell KL, Foster-Schubert KE, Alfano CM, et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol. 2012;30(19):2314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim C, Randolph JF, Golden SH, et al. Weight loss increases follicle stimulating hormone in overweight postmenopausal women corrected. Obesity (Silver Spring). 2015;23(1):228–33.

    Article  CAS  Google Scholar 

  122. Ennour-Idrissi K, Maunsell E, Diorio C. Effect of physical activity on sex hormones in women: a systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res. 2015;17(1):139. -015-0647-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Lass N, Kleber M, Winkel K, Wunsch R, Reinehr T. Effect of lifestyle intervention on features of polycystic ovarian syndrome, metabolic syndrome, and intima-media thickness in obese adolescent girls. J Clin Endocrinol Metab. 2011;96(11):3533–40.

    Article  CAS  PubMed  Google Scholar 

  124. Haqq L, McFarlane J, Dieberg G, Smart N. Effect of lifestyle intervention on the reproductive endocrine profile in women with polycystic ovarian syndrome: a systematic review and meta-analysis. Endocr Connect. 2014;3(1):36–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Moran LJ, Hutchison SK, Norman RJ, Teede HJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011;(7):CD007506. doi (7):CD007506.

    Google Scholar 

  126. Kim C, Pi-Sunyer X, Barrett-Connor E, et al. Sex hormone binding globulin and sex steroids among premenopausal women in the diabetes prevention program. J Clin Endocrinol Metab. 2013;98(7):3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. McTiernan A, Tworoger SS, Rajan KB, et al. Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomark Prev. 2004;13(7):1099–105.

    CAS  Google Scholar 

  128. Friedenreich CM, Woolcott CG, McTiernan A, et al. Alberta physical activity and breast cancer prevention trial: sex hormone changes in a year-long exercise intervention among postmenopausal women. J Clin Oncol. 2010;28(9):1458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Palomba S, Giallauria F, Falbo A, et al. Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with an ovulatory infertility: a 24-week pilot study. Hum Reprod. 2008;23(3):642–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rastogi Kalyani MD, MHS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Quartuccio, M., Yalamanchi, S., Golden, S.H., Regensteiner, J.G., Kalyani, R.R. (2018). Sex Differences in Exercise Performance and Exercise Training Among Persons with Type 2 Diabetes. In: Reusch, MD, J., Regensteiner, PhD, MA, BA, J., Stewart, Ed.D., FAHA, MAACVPR, FACSM , K., Veves, MD, DSc, A. (eds) Diabetes and Exercise. Contemporary Diabetes. Humana Press, Cham. https://doi.org/10.1007/978-3-319-61013-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61013-9_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-61011-5

  • Online ISBN: 978-3-319-61013-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics