Skip to main content

Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in Type 2 Diabetes

  • Chapter
  • First Online:
Diabetes and Exercise

Part of the book series: Contemporary Diabetes ((CDI))

  • 2472 Accesses

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a growing problem likely to worsen worldwide with the epidemic of obesity. Insulin resistance in obesity drives a constellation of metabolic abnormalities that create a state known as “lipotoxicity,” in which the liver is uniquely posed to be affected (Cusi K, Gastroenterology 142:711–25 e6, 2012; Neuschwander-Tetri BA, Hepatology 52:774–88, 2010). Additional factors that appear to play a role are chronic hyperglycemia and subclinical inflammation. As the vast majority of patients with type 2 diabetes mellitus (T2DM) are obese, they are particularly susceptible to develop NAFLD and to have a worse long-term prognosis. The disease can present itself as a quiescent condition with hepatic triglyceride accumulation with minimal or no inflammation or adopt a more aggressive phenotype associated with hepatocellular injury, marked inflammation, and fibrosis (known as nonalcoholic steatohepatitis or NASH) (Ahmed A, Wong RJ, Harrison SA, Clin Gastro Hepatol 13:2062–70, 2015). These patients are at a much higher risk of cirrhosis, as well as of hepatocellular carcinoma (Wang C, Wang X, Gong G, et al., Int J Cancer 130:1639–48, 2012).

Disclosure Statement:

K.C. has received research support from Janssen, Novartis, and Octeta and served as a consultant for (in alphabetical order) Janssen, Lilly, Novo Nordisk, Octeta, Pfizer, and Tobira Therapeutics, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

Adipo-IR:

Adipose tissue insulin resistance

ALT:

Alanine aminotransferase

AST: ALT:

Aspartate aminotransferase

BMI:

Body mass index

CT:

Computed tomography

CVD:

Cardiovascular disease

DNL:

De novo lipogenesis

DPP-4:

Dipeptidyl peptidase-4

GLP-1RA:

Glucagon-like peptide-1 receptor agonist

HbA1C :

Hemoglobin A1c

HCC:

Hepatocellular carcinoma

IHTG:

Intrahepatic triglycerides

NAFLD:

Nonalcoholic fatty liver disease

NAS:

NAFLD activity score

NASH:

Nonalcoholic steatohepatitis

PPAR:

Peroxisome proliferator-activated receptor

PUFAs:

Polyunsaturated fatty acids

RCT:

Randomized controlled trials

SGLT2:

Sodium-glucose co-transporter 2

T2DM:

Type 2 diabetes mellitus

TZDs:

Thiazolidinediones

References

  1. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–25 e6.

    Article  CAS  PubMed  Google Scholar 

  2. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010;52:774–88.

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed A, Wong RJ, Harrison SA. Nonalcoholic fatty liver disease review: diagnosis, treatment and outcomes. Clin Gastroenterol Hepatol. 2015;13:2062–70.

    Article  PubMed  Google Scholar 

  4. Wang C, Wang X, Gong G, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130:1639–48.

    Article  CAS  PubMed  Google Scholar 

  5. Sung KC, Kim SH. Interrelationship between fatty liver and insulin resistance in the development of type 2 diabetes. J Clin Endocrinol Metab. 2011;96:1093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang Y, Jung HS, Yun KE, Cho J, Cho YK, Ryu S. Cohort study of non-alcoholic fatty liver disease, NAFLD fibrosis score, and the risk of incident diabetes in a Korean population. Amer J Gastroenterology. 2013;108:1861–8.

    Article  CAS  Google Scholar 

  7. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of NAFLD: practice guidance from the American association for the study of liver disease. Hepatology. 2017, July 17. doi:10.1002/hep.29367. [Epub ahead of print]

  8. EASL-EASD-EASO. Clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia. 2016;64:1388–402.

    Google Scholar 

  9. Hazlehurst JM, Woods C, Marjot T, et al. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016;65:1096–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cusi K, Orsak B, Bril F, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized, controlled trial. Ann Intern Med. 2016;165:305–15.

    Article  PubMed  Google Scholar 

  11. Lazo M, Hernaez R, Bonekamp S, et al. Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study. BMJ. 2011;343:d6891.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Musso G, Gambino R, Tabibian JH, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001680.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Targher G, Bertolini L, Rodella S, et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia. 2008;51:444–50.

    Article  CAS  PubMed  Google Scholar 

  14. Adams LA, Harmsen S, St Sauver JL, et al. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol. 2010;105:1567–73.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–97. e10

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bril F, Sninsky JJ, Baca AM, et al. Hepatic steatosis and insulin resistance, but not steatohepatitis, promote atherogenic dyslipidemia in NAFLD. J Clin Endocrinol Metab. 2016;101:644–52.

    Article  CAS  PubMed  Google Scholar 

  17. Lomonaco R, Bril F, Portillo-Sanchez P, et al. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care. 2016;39:632–8.

    Article  PubMed  Google Scholar 

  18. Bril F, Barb D, Portillo-Sanchez P, Biernacki D, Lomonaco R, Suman A, Weber MH, Budd JT, Lupi ME, Cusi K. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology. 2017;65:1132–44.

    Article  CAS  PubMed  Google Scholar 

  19. Gupte P, Amarapurkar D, Agal S, Baijal R, Kulshrestha P, Pramanik S, Patel N, Madan A, Amarapurkar A. Hafeezunnisa: non-alcoholic steatohepatitis in type 2 diabetes mellitus. J Gastroenterol Hepatol. 2004;19:854–8.

    Article  PubMed  Google Scholar 

  20. Neuschwander-Tetri BA, Clark JM, Bass NM, Van Natta ML, Unalp-Arida A, Tonascia J, Zein CO, Brunt EM, Kleiner DE, McCullough AJ, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52:913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012;10:1342–59. e1342

    Article  PubMed  PubMed Central  Google Scholar 

  22. Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E, Bass NM. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology. 2012;56:943–51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA. 2015;313:1973–4.

    Article  CAS  PubMed  Google Scholar 

  24. Bril F, Cusi K. Management of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a call to action. Diabetes Care. 2017;40:419–30.

    Article  PubMed  Google Scholar 

  25. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124–31.

    Article  PubMed  Google Scholar 

  26. Targher G, Bertolini L, Padovani R, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30:1212–8.

    Article  PubMed  Google Scholar 

  27. Petit JM, Guiu B, Terriat B, et al. Nonalcoholic fatty liver is not associated with carotid intima-media thickness in type 2 diabetic patients. J Clin Endocrinol Metab. 2009;94:4103–6.

    Article  CAS  PubMed  Google Scholar 

  28. Hossain N, Afendy A, Stepanova M, et al. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1224–9. 9 e1-2

    Article  CAS  PubMed  Google Scholar 

  29. Williamson RM, Price JF, Glancy S, et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care. 2011;34:1139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leite NC, Villela-Nogueira CA, Pannain VL, et al. Histopathological stages of nonalcoholic fatty liver disease in type 2 diabetes: prevalences and correlated factors. Liver Int. 2011;31:700–6.

    Article  PubMed  Google Scholar 

  31. Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost two-fold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016;31:936–44.

    Article  CAS  PubMed  Google Scholar 

  32. Ortiz-Lopez C, Lomonaco R, Orsak B, Finch J, Chang Z, Kochunov V, Hardies J, Cusi K. Prevalence of prediabetes and diabetes and metabolic profile of patients with NAFLD. Diabetes Care. 2012;35:1–6.

    Article  CAS  Google Scholar 

  33. Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev. 2013;34:84–129.

    Article  CAS  PubMed  Google Scholar 

  34. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Jarvinen H, Svegliati-Baroni G. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 2010;42:320–30.

    Article  CAS  PubMed  Google Scholar 

  35. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29:351–66.

    Article  CAS  PubMed  Google Scholar 

  36. Shams ME, Al-Gayyar MM, Barakat EA. Type 2 diabetes mellitus-induced hyperglycemia in patients with NAFLD and normal LFTs: relationship to lipid profile, oxidative stress and pro-inflammatory cytokines. Sci Pharm. 2011;79:623–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Portillo P, Yavuz S, Bril F, Cusi K. Role of insulin resistance and diabetes in the pathogenesis and treatment of NAFLD. Curr HepatolReports. 2014;13:159–70.

    Google Scholar 

  38. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.

    Article  CAS  PubMed  Google Scholar 

  39. Leung C, Herath CB, Jia Z, Goodwin M, Mak KY, Watt MJ, Forbes JM, Angus PW. Dietary glycotoxins exacerbate progression of experimental fatty liver disease. J Hepatol. 2014;60:832–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hyogo H, Yamagishi S, Iwamoto K, Arihiro K, Takeuchi M, Sato T, Ochi H, Nonaka M, Nabeshima Y, Inoue M, et al. Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2007;22:1112–9.

    Article  CAS  PubMed  Google Scholar 

  41. Nseir W, Nassar F, Assy N. Soft drinks consumption and nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16:2579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, Johnson RJ, Abdelmalek MF. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48:993–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiu S, Sievenpiper JL, de Souza RJ, Cozma AI, Mirrahimi A, Carleton AJ, Ha V, Di Buono M, Jenkins AL, Leiter LA, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr. 2014;68:416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Debosch BJ, Chen Z, Saben JL, Finck BN, Moley KH. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J Biol Chem. 2014;289:10989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gautier-Stein A, Soty M, Chilloux J, Zitoun C, Rajas F, Mithieux G. Glucotoxicity induces glucose-6-phosphatase catalytic unit expression by acting on the interaction of HIF-1alpha with CREB-binding protein. Diabetes. 2012;61:2451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meugnier E, Rome S, Vidal H. Regulation of gene expression by glucose. Curr Opin Clin Nutr Metab Care. 2007;10:518–22.

    Article  CAS  PubMed  Google Scholar 

  48. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118:829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fracanzani AL, Valenti L, Bugianesi E, et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology. 2008;48:792–8.

    Article  CAS  PubMed  Google Scholar 

  50. Koehler EM, Plompen EP, Schouten JN, et al. Presence of diabetes mellitus and steatosis is associated with liver stiffness in a general population: the Rotterdam study. Hepatology. 2016;63:138–47.

    Article  CAS  PubMed  Google Scholar 

  51. Kwok R, Choi KC, Wong GL, et al. Screening diabetic patients for non-alcoholic fatty liver disease with controlled attenuation parameter and liver stiffness measurements: a prospective cohort study. Gut. 2016;65:1359–68.

    Article  PubMed  Google Scholar 

  52. Adams LA, Sanderson S, Lindor KD, et al. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol. 2005;42:132–8.

    Article  PubMed  Google Scholar 

  53. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126:460–8.

    Article  PubMed  Google Scholar 

  54. Pais R, Charlotte F, Fedchuk L, et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol. 2013;59:550–6.

    Article  CAS  PubMed  Google Scholar 

  55. Ekstedt M, Franzen LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–73.

    Article  CAS  PubMed  Google Scholar 

  56. Dam-Larsen S, Becker U, Franzmann MB, et al. Final results of a long-term, clinical follow-up in fatty liver patients. Scand J Gastroenterol. 2009;44:1236–43.

    Article  CAS  PubMed  Google Scholar 

  57. Soderberg C, Stal P, Askling J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51:595–602.

    Article  PubMed  Google Scholar 

  58. Stepanova M, Rafiq N, Makhlouf H, et al. Predictors of all-cause mortality and liver-related mortality in patients with non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2013;58:3017–23.

    Article  CAS  PubMed  Google Scholar 

  59. Mittal S, El-Serag HB, Sada YH, et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2016;14:124–31. e1

    Article  CAS  PubMed  Google Scholar 

  60. Mittal S, Sada YH, El-Serag HB, et al. Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs population. Clin Gastroenterol Hepatol. 2015;13:594–601. e1

    Article  PubMed  Google Scholar 

  61. Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J, Darland C, Finch J, Gastaldelli A, Harrison S, Tio F, et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology. 2012;55:1389–97.

    Article  CAS  PubMed  Google Scholar 

  62. Bril F, Lomonaco R, Cusi K. The challenge of managing dyslipidemia in patients with nonalcoholic fatty liver disease. Clinical Lipidology. 2012;7:471–81.

    Article  CAS  Google Scholar 

  63. Bril F, Lomonaco R, Orsak B, Ortiz-Lopez C, Webb A, Tio F, Hecht J, Cusi K. Relationship between disease severity, hyperinsulinemia and impaired insulin clearance in patients with nonalcoholic steatohepatitis (NASH). Hepatology. 2014;59:2178–87.

    Article  CAS  PubMed  Google Scholar 

  64. Lomonaco R, Ortiz-Lopez C, Orsak B, Finch J, Webb A, Bril F, Louden C, Tio F, Cusi K. Role of ethnicity in overweight and obese patients with nonalcoholic steatohepatitis. Hepatology. 2011;54:837–45.

    Article  PubMed  Google Scholar 

  65. Sunny NE, Bril F, Cusi K. Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol Metab. 2017;28:250–60.

    Article  CAS  PubMed  Google Scholar 

  66. Sunny NE, Kalavalapalli S, Bril F, et al. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab. 32015(09):E311–9.

    Google Scholar 

  67. Patterson RE, Kalavalapalli S, Williams CM, et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. Am J Physiol Endocrinol Metab. 2016;310:E484–94.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science. 2015;347:1253–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L, Sunny NE, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2015;125:4447–62.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koliaki C, Szendroedi J, Jelenik T, Kaul K, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver or steatohepatitis. Cell Metab. 2015;21:739–46.

    Article  CAS  PubMed  Google Scholar 

  71. Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14:804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21:27–36.

    Article  CAS  PubMed  Google Scholar 

  73. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20:573–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–307.

    Article  CAS  PubMed  Google Scholar 

  75. Fabbrini E, Mohammed BS, Magkos F, et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134:424–31.

    Article  CAS  PubMed  Google Scholar 

  76. Kim F, Tysseling K, Rice J, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKb. Arterioscler Thromb Vasc Biol. 2005;25:989–94.

    Article  CAS  PubMed  Google Scholar 

  77. Kashyap S, Belfort R, Cersosimo E, Lee S, Cusi K. Chronic low-dose lipid infusion in healthy subjects induces markers of endothelial activation independent of its metabolic effects. J Cardiometabolic Syndrome. 2008;3:141–6.

    Article  Google Scholar 

  78. Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol. 2010;16:9–9.

    Article  CAS  Google Scholar 

  79. McGavock J, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus. Circulation. 2007;116:1170–5.

    Article  PubMed  Google Scholar 

  80. Lautamäki R, Borra R, Iozzo P, et al. Liver steatosis coexist with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am J Phys. 2006;291:E282–90.

    Article  CAS  Google Scholar 

  81. Perseghin G. The role of non-alcoholic fatty liver disease in cardiovascular disease. Dig Dis. 2010;28:210–3.

    Article  PubMed  CAS  Google Scholar 

  82. Rijzewijk L, Jonker J, van der Meer R, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol. 2010;56:225–33.

    Article  CAS  PubMed  Google Scholar 

  83. Kim SK, Choi YJ, Huh BW, et al. Nonalcoholic fatty liver disease is associated with increased carotid intima-media thickness only in type 2 diabetic subjects with insulin resistance. J Clin Endocrinol Metab. 2014;99:1879–84.

    Article  CAS  PubMed  Google Scholar 

  84. Kim D, Choi SY, Park EH, et al. Nonalcoholic fatty liver disease is associated with coronary artery calcification. Hepatology. 2012;56:605–13.

    Article  CAS  PubMed  Google Scholar 

  85. Adams LA, Sanderson S, Lindor KD, Angulo P. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol. 2005;42:13238.

    Article  Google Scholar 

  86. El Azeem HA, Khalek el SA, El-Akabawy H, et al. Association between nonalcoholic fatty liver disease and the incidence of cardiovascular and renal events. J Saudi Heart Assoc. 2013;25:239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Maximos M, Bril F, Portillo SP, et al. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology. 2015;61:153–60.

    Article  CAS  PubMed  Google Scholar 

  88. Verma S, Jensen D, Hart J, et al. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver Int. 2013;33:1398–405.

    Article  CAS  PubMed  Google Scholar 

  89. Portillo-Sanchez P, Bril F, Maximos M, et al. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab. 2015;100:2231–8.

    Article  CAS  PubMed  Google Scholar 

  90. Bril F, Ortiz-Lopez C, Lomonaco R, et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 2015;35:2139–46.

    Article  CAS  PubMed  Google Scholar 

  91. Kaswala DH, Lai M, Afdhal NH. Fibrosis assessment in nonalcoholic fatty liver disease (NAFLD) in 2016. Dig Dis Sci. 2016;61:1356–64.

    Article  CAS  PubMed  Google Scholar 

  92. Hannah WN, Harrison SA. NAFLD and elastography – incremental advances but work still to be done. Hepatology. 2016;63:1762–4.

    Article  PubMed  Google Scholar 

  93. Wong VW, Vergniol J, Wong GL, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2012;107:1862–71.

    Article  PubMed  Google Scholar 

  94. Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–37. e7

    Article  PubMed  Google Scholar 

  95. Papagianni M, Sofogianni A, Tziomalos K. Non-invasive methods for the diagnosis of nonalcoholic fatty liver disease. World J Hepatol. 2015;7:638–48.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bedossa P, Patel K. Biopsy and noninvasive methods to assess progression of nonalcoholic fatty liver disease. Gastroenterology. 2016;150:1811–22.

    Article  PubMed  Google Scholar 

  97. Cusi K, Chang Z, Harrison S, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60:167–74.

    Article  CAS  PubMed  Google Scholar 

  98. Hannah WN, Harrison SA. Effect of weight loss, diet, exercise, and bariatric surgery on nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20:339–50.

    Article  PubMed  Google Scholar 

  99. Portillo-Sanchez P, Cusi K. Treatment of nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus. J Clin Diabetes Endocrinol. 2016;2:9.

    Article  Google Scholar 

  100. Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearns M, Wands JR, Fava JL, Wing RR. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lazo M, Solga SF, Horska A, Bonekamp S, Diehl AM, Brancati FL, Wagenknecht LE, Pi-Sunyer FX, Kahn SE, Clark JM, et al. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. Diabetes Care. 2010;33:2156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–78.

    Article  PubMed  Google Scholar 

  103. Bacchi E, Negri C, Targher G, Faccioli N, Lanza M, Zoppini G, Zanolin E, Schena F, Bonora E, Moghetti P. Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with NAFLD (the RAED2 randomized trial). Hepatology. 2013;58:1287–95.

    Article  CAS  PubMed  Google Scholar 

  104. Lomonaco R, Sunny NE, Bril F, Cusi K. Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs. 2013;73:1–14.

    Article  CAS  PubMed  Google Scholar 

  105. Yki-Jarvinen H. Diagnosis of non-alcoholic fatty liver disease (NAFLD). Diabetologia. 2016;59:1104–11.

    Article  CAS  PubMed  Google Scholar 

  106. Moretto M, Kupski C, da Silva VD, et al. Effect of bariatric surgery on liver fibrosis. Obes Surg. 2012;22:1044–9.

    Article  PubMed  Google Scholar 

  107. Clanton J, Subichin M. The effects of metabolic surgery on fatty liver disease and nonalcoholic steatohepatitis. Surg Clin North Am. 2016;96:703–15.

    Article  PubMed  Google Scholar 

  108. Bugianesi E, Gentilcore E, Manini R, et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol. 2005;100:1082–90.

    Article  CAS  PubMed  Google Scholar 

  109. Loomba R, Lutchman G, Kleiner DE, et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2009;29:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lavine JE, Schwimmer JB, Van Natta ML, the Nonalcoholic Steatohepatitis Clinical Research Network, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011;305:1659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gastaldelli A, Harrison S, Belfort R, Hardies J, Balas B, Schenker S, Cusi K. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology. 2009;50:1087–93.

    Article  CAS  PubMed  Google Scholar 

  112. Gastaldelli A, Harrison S, Belfort-Aguiar A, Hardies J, Balas B, Schenker S, Cusi K. Pioglitazone in the treatment of NASH: role of adiponectin. Aliment Pharmacol Ther. 2010;32:769–75.

    Article  CAS  PubMed  Google Scholar 

  113. Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135:1176–84.

    Article  CAS  PubMed  Google Scholar 

  114. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. New Engl J Med. 2010;362:1675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yau H, Rivera K, Lomonaco R, Cusi K. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab rep. 2013;13:329–41.

    Article  CAS  PubMed  Google Scholar 

  116. Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L, et al. Rosiglitazone for nonalcoholic steatohepatitis: one- year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) trial. Gastroenterology. 2008;135:100–10.

    Article  CAS  PubMed  Google Scholar 

  117. Ratziu V, Charlotte F, Bernhardt C, Giral P, Halbron M, LeNaour G, Hartemann-Heurtier A, Bruckert E, Poynard T for the LIDO Study Group. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology. 2010;51:445–53.

    Article  CAS  PubMed  Google Scholar 

  118. Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs – insights from the rosiglitazone experience. N Engl J Med. 2013;369:1285–7.

    Article  CAS  PubMed  Google Scholar 

  119. Charbonnel B, Schernthaner G, Brunetti P, Matthews DR, Urquhart R, Tan MH, Hanefeld M. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. Diabetologia. 2005;48:1093–104.

    Article  CAS  PubMed  Google Scholar 

  120. Tan MH, Baksi A, Krahulec B, et al. Comparison of pioglitazone and gliclazide in sustaining glycemic control over 2 years in patients with type 2 diabetes. Diabetes Care. 2005;28:544–50.

    Article  CAS  PubMed  Google Scholar 

  121. Hanefeld M1, Pfützner A, Forst T, Lübben G. Glycemic control and treatment failure with pioglitazone versus glibenclamide in type 2 diabetes mellitus: a 42-month, open-label, observational, primary care study. Curr Med Res Opin. 2006;22:1211–5.

    Article  CAS  PubMed  Google Scholar 

  122. Mazzone T, Meyer PM, Feinstein SB, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA. 2006;296:2572–81.

    Article  CAS  PubMed  Google Scholar 

  123. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.

    Article  CAS  PubMed  Google Scholar 

  124. Balas B, Belfort R, Harrison S, Darland C, Finch J, Schenker S, Gastaldelli A, Cusi K. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J Hepatol. 2007;47:565–70.

    Article  CAS  PubMed  Google Scholar 

  125. Lincoff A, Wolski K, Nicholls S, Nissen S. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus. A meta-analysis of randomized trials. JAMA. 2007;298:1180–8.

    Google Scholar 

  126. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  127. Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;7(374):1321–31.

    Article  CAS  Google Scholar 

  128. Zghebi SS, Steinke DT, Rutter MK, Emsley RA, Ashcroft DM. Comparative risk of major cardiovascular events associated with second-line antidiabetic treatments: a retrospective cohort study using UK primary care data linked to hospitalization and mortality records. Diabetes Obes Metab. 2016;18:916–24.

    Article  CAS  PubMed  Google Scholar 

  129. Levin D, Bell S, Sund R, et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia. 2015;58:493–504.

    Article  CAS  PubMed  Google Scholar 

  130. Lewis JD, Habel LA, Quesenberry CP, Strom BL, Peng T, Hedderson MM, Ehrlich SF, Mamtani R, Bilker W, Vaughn DJ, Nessel L, Van Den Eeden SK, Ferrara A. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA. 2015;314:265–77.

    Article  CAS  PubMed  Google Scholar 

  131. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–37.

    Article  CAS  PubMed  Google Scholar 

  132. Forsmark CE. Incretins, diabetes, pancreatitis and pancreatic cancer: what the GI specialist needs to know. Pancreatology. 2016;16:10–3.

    Article  PubMed  Google Scholar 

  133. Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, Anania FA. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology. 2010;51:1584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, Garelli P, Casini A, Manco M, Mingrone G, Risaliti A, Frega GN, Benedetti A, Gastaldelli A. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 2011;31:1285–97.

    Article  CAS  PubMed  Google Scholar 

  135. Panjwani N, Mulvihill EE, Longuet C, et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE−/− mice. Endocrinology. 2013;154:127–39.

    Article  CAS  PubMed  Google Scholar 

  136. Pyke C, Heller RS, Kirk RK, Ørskov C, Reedtz-Runge S, Kaastrup P, Hvelplund A, Bardram L, Calatayud D, Knudsen LB. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155:1280–90.

    Article  PubMed  CAS  Google Scholar 

  137. Jin T, Weng J. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. Am J Physiol Endocrinol Metab. 2016;311:E620–7.

    Article  PubMed  Google Scholar 

  138. Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, Barzilai N, Oren R, Fishman S. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54:1214–23.

    Article  CAS  PubMed  Google Scholar 

  139. Lee J, Hong SW, Chae SW, Kim DH, Choi JH, Bae JC, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Kim SW, Lee WY. Exendin-4 improves steatohepatitis by increasing sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS One. 2012;7:e31394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Trevaskis JL, Griffin PS, Wittmer C, Neuschwander-Tetri BA, Brunt EM, Dolman CS, Erickson MR, Napora J, Parkes DG, Roth JD. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–72.

    Article  CAS  PubMed  Google Scholar 

  141. Gastaldelli A, Gaggini M, Daniele G, et al. Exenatide improves both hepatic and adipose tissue insulin resistance: a dynamic PET study. Hepatology. 2016;64:2028–37.

    Article  CAS  PubMed  Google Scholar 

  142. Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P, Ronsin O, Pradel V, Lesavre N, Martin JC, Jacquier A, Lefur Y, Bernard M, Gaborit B. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab. 2016;18:882–91.

    Article  CAS  PubMed  Google Scholar 

  143. Cuthbertson DJ, Irwin A, Gardner CJ, Daousi C, Purewal T, Furlong N, Goenka N, Thomas EL, Adams VL, Pushpakom SP, Pirmohamed M, Kemp GJ. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One. 2012;7:e50117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, During M, Zdravkovic M, Strauss BJ, Garber AJ, Lead GL-S. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 2009;11:1163–72.

    Article  CAS  PubMed  Google Scholar 

  145. Ohki T, Isogawa A, Iwamoto M, Ohsugi M, Yoshida H, Toda N, Tagawa K, Omata M, Koike K. The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone. Sci World J. 2012;2012:496453.

    Article  CAS  Google Scholar 

  146. Armstrong MJ, Houlihan DD, Rowe IA, Clausen WH, Elbrond B, Gough SC, Tomlinson JW, Newsome PN. Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Aliment Pharmacol Ther. 2013;37:234–42.

    Article  CAS  PubMed  Google Scholar 

  147. Eguchi Y, Kitajima Y, Hyogo H, Takahashi H, Kojima M, Ono M, Araki N, Tanaka K, Yamaguchi M, Matsuda Y, Ide Y, Otsuka T, Ozaki I, Ono N, Eguchi T, Anzai K, Japan Study Group for N. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol Res. 2015;45:269–78.

    Article  CAS  PubMed  Google Scholar 

  148. Petit JM, Cercueil JP, Loffroy R, Denimal D, Bouillet B, Fourmont C, Chevallier O, Duvillard L, Vergès B. Effect of liraglutide therapy on liver fat content in patients with inadequately controlled type 2 diabetes. The Lira-NAFLD study. J Clin Endocrinol Metab. 2016:jc20162775.

    Google Scholar 

  149. Vanderheiden A, Harrison LB, Warshauer JT, Adams-Huet B, Li X, Yuan Q, Hulsey K, Dimitrov I, Yokoo T, Jaster AW, Pinho DF, Pedrosa I, Lenkinski RE, Pop LM, Lingvay I. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab. 2016;101:1798–806.

    Article  PubMed  Google Scholar 

  150. Tang A, Rabasa-Lhoret R, Castel H, Wartelle-Bladou C, Gilbert G, Massicotte-Tisluck K, Chartrand G, Olivie D, Julien AS, de Guise J, Soulez G, Chiasson JL. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care. 2015;38:1339–46.

    Article  CAS  PubMed  Google Scholar 

  151. Smits MM, Tonneijck L, Muskiet MH, Kramer MH, Pouwels PJ, Pieters-van den Bos IC, Hoekstra T, Diamant M, van Raalte DH, Cahen DL. Twelve-week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: a randomised placebo-controlled trial. Diabetologia. 2016;59:2588–93.

    Article  CAS  PubMed  Google Scholar 

  152. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, Hazlehurst JM, Guo K, Lt T, Abouda G, Aldersley MA, Stocken D, Gough SC, Tomlinson JW, Brown RM, Hubscher SG, Newsome PN. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;13(387):679–90.

    Article  CAS  Google Scholar 

  153. Armstrong MJ, Hull D, Guo K, Barton D, Hazlehurst JM, Gathercole LL, Nasiri M, Yu J, Gough SC, Newsome PN, Tomlinson JW. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J Hepatol. 2016;64:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mells JE, Anania FA. The role of gastrointestinal hormones in hepatic lipid metabolism. Semin Liver Dis. 2013;33:343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shirakawa J, Fujii H, Ohnuma K, Sato K, Ito Y, Kaji M, Sakamoto E, Koganei M, Sasaki H, Nagashima Y, Amo K, Aoki K, Morimoto C, Takeda E, Terauchi Y. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes. 2011;60:1246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Macauley M, Hollingsworth KG, Smith FE, Thelwall PE, Al-Mrabeh A, Schweizer A, Foley JE, Taylor R. Effect of vildagliptin on hepatic steatosis. J Clin Endocrinol Metab. 2015;100:1578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Iwasaki T, Yoneda M, Inamori M, Shirakawa J, Higurashi T, Maeda S, Terauchi Y, Nakajima A. Sitagliptin as a novel treatment agent for non-alcoholic fatty liver disease patients with type 2 diabetes mellitus. Hepato-Gastroenterology. 2011;58:2103–5.

    CAS  PubMed  Google Scholar 

  158. Fukuhara T, Hyogo H, Ochi H, Fujino H, Kan H, Naeshiro N, Honda Y, Miyaki D, Kawaoka T, Tsuge M, Hiramatsu A, Imamura M, Kawakami Y, Aikata H, Chayama K. Efficacy and safety of sitagliptin for the treatment of nonalcoholic fatty liver disease with type 2 diabetes mellitus. Hepato-Gastroenterology. 2014;61:323–8.

    CAS  PubMed  Google Scholar 

  159. Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care. 2015;38:2344–53.

    Article  CAS  PubMed  Google Scholar 

  160. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, Investigators E-RO. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  161. Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, Koide K, Takakura S. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;754:19–24.

    Article  CAS  PubMed  Google Scholar 

  162. Yokono M, Takasu T, Hayashizaki Y, Mitsuoka K, Kihara R, Muramatsu Y, Miyoshi S, Tahara A, Kurosaki E, Li Q, Tomiyama H, Sasamata M, Shibasaki M, Uchiyama Y. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol. 2014;727:66–74.

    Article  CAS  PubMed  Google Scholar 

  163. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, Meininger G. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56:2582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–33.

    Article  CAS  PubMed  Google Scholar 

  165. Barb D, Portillo-Sanchez P, Cusi K. Statins and non-alcoholic steatohepatitis. Metab Clin Exp. 2016 65:1183–95.

    Google Scholar 

  166. Barb D, Portillo-Sanchez P, Cusi K. Statins and non-alcoholic steatohepatitis. Metab Clin Exp. 2016;65:1183–95.

    Article  CAS  PubMed  Google Scholar 

  167. Barb D, Portillo-Sanchez P, Cusi K. Statins and non-alcoholic steatohepatitis. Metabolism, clinical and experimental 2016 http://dx.doi.org/10.1016/j.metabol.2016.10.004

  168. Nelson A, Torres DM, Morgan AE, Fincke C, Harrison SA. A pilot study using simvastatin in the treatment of nonalcoholic steatohepatitis: a randomized placebo-controlled trial. J Clin Gastroenterol. 2009;43:990–4.

    Article  CAS  PubMed  Google Scholar 

  169. Chan DC, Watts GF, Gan SK, Ooi EM, Barrett PH. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care. 2010;33:1134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yoneda M, Fujita K, Nozaki Y, Endo H, Takahashi H, Hosono K, et al. Efficacy of ezetimibe for the treatment of non-alcoholic steatohepatitis: an open-label, pilot study. Hepatol Res. 2010;40(6):566–73.

    Article  CAS  PubMed  Google Scholar 

  171. Enjoji M, Machida K, Kohjima M, Kato M, Kotoh K, Matsunaga K, et al. NPC1L1 inhibitor ezetimibe is a reliable therapeutic agent for non-obese patients with nonalcoholic fatty liver disease. Lipids Health Dis. 2010;9:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Loomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology. 2015;61:1239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dasarathy S, Dasarathy J, Khiyami A, Yerian L, Hawkins C, Sargent R, et al. Double-blind randomized placebo-controlled clinical trial of omega 3 fatty acids for the treatment of diabetic patients with nonalcoholic steatohepatitis. J Clin Gastroenterol. 2015;49:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Scorletti E, Bhatia L, McCormick KG, Clough GF, Nash K, Hodson L, et al. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the WELCOME study. Hepatology. 2014;60:1211–21.

    Article  CAS  PubMed  Google Scholar 

  175. Sanyal AJ, Abdelmalek MF, Suzuki A, Cummings OW, Chojkier M, Group E-AS. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology. 2014;147:377–84.

    Article  CAS  PubMed  Google Scholar 

  176. Parker HM, Johnson NA, Burdon CA, Cohn JS, O'Connor HT, George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;56:944–51.

    Article  CAS  PubMed  Google Scholar 

  177. Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2011;306:1549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.

    Article  CAS  PubMed  Google Scholar 

  179. Li W, Zheng L, Sheng C, Cheng X, Qing L, Qu S. Systematic review on the treatment of pentoxifylline in patients with non-alcoholic fatty liver disease. Lipids Health Dis. 2011;10:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Van Wagner LB, Koppe SW, Brunt EM, Gottstein J, Gardikiotes K, Green RM, Rinella ME. Pentoxifylline for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. Ann Hepatol. 2011;10:277–86.

    PubMed  Google Scholar 

  181. Zein CO, Yerian LM, Gogate P, Lopez R, Kirwan JP, Feldstein AE, McCullough AJ. Pentoxifylline improves nonalcoholic steatohepatitis: a randomized placebo-controlled trial. Hepatology. 2011;54:1610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rinella ME, Lominadze Z, Loomba R, Charlton M, Neuschwander-Tetri BA, Caldwell SH, et al. Practice patterns in NAFLD and NASH: real life differs from published guidelines. Therap Adv Gastroenterol. 2016;9:4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cusi K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia. 2016;59:1112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, the CRN Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65.

    Article  CAS  PubMed  Google Scholar 

  185. Ratziu V, Harrison S, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–59.

    Article  CAS  PubMed  Google Scholar 

  186. Yki-Järvinen H. Diagnosis of non-alcoholic fatty liver disease (NAFLD). Diabetologia. 2016;59:1104–11.

    Article  PubMed  CAS  Google Scholar 

  187. Ratziu V, Massard J, Charlotte F, et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–54.

    Article  CAS  PubMed  Google Scholar 

  189. Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008;57:1441–7.

    Article  CAS  PubMed  Google Scholar 

  190. Sumida Y, Yoneda M, Hyogo H, et al. A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol. 2011;46:257–68.

    Article  CAS  PubMed  Google Scholar 

  191. Adams LA, George J, Bugianesi E, et al. Complex non-invasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2011;26:1536–43.

    Google Scholar 

  192. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Cusi MD, FACP, FACE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cusi, K. (2018). Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in Type 2 Diabetes. In: Reusch, MD, J., Regensteiner, PhD, MA, BA, J., Stewart, Ed.D., FAHA, MAACVPR, FACSM , K., Veves, MD, DSc, A. (eds) Diabetes and Exercise. Contemporary Diabetes. Humana Press, Cham. https://doi.org/10.1007/978-3-319-61013-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61013-9_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-61011-5

  • Online ISBN: 978-3-319-61013-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics