Skip to main content

Exercise, Blood Flow, and the Skeletal Muscle Microcirculation in Diabetes Mellitus

  • Chapter
  • First Online:
Diabetes and Exercise

Abstract

Aerobic exercise capacity is impaired in both type 1 diabetes (T1DM) and type 2 diabetes (T2DM), and this impairment is predictive of future morbidity and mortality. Although the precise etiology of impaired exercise capacity in diabetes remains unclear, several distinct lines of evidence indicate that reduced delivery of oxygen by the cardiovascular system plays a causal role. Cardiac output is often but not always reduced in diabetes. This change is sufficient but not necessary for reduced exercise capacity. Skeletal muscle blood flow is also often but not always reduced in diabetes. This change is also sufficient but not necessary for reduced exercise capacity. In addition, a growing number of animal and simulation studies show that heterogeneous distribution of blood flow within the microcirculation contributes to oxygen delivery limitations in diabetes. Once again, this change is sufficient but not necessary for reduced exercise capacity. In this chapter, we discuss each of these changes in cardiovascular function and their likely causes, beginning with the heart and gradually progressing to capillary level. We then conclude our overview by interpreting the causality or lack thereof of each diabetes-related pathological change as it relates to reduced oxygen delivery to the skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awotidebe TO, Adedoyin RA, Yusuf AO, Mbada CE, Opiyo R, Maseko FC. Comparative functional exercise capacity of patients with type 2-diabetes and healthy controls: a case control study. Pan Afr Med J. 2014;19:257.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gürdal A, Kasikcioglu E, Yakal S, Bugra Z. Impact of diabetes and diastolic dysfunction on exercise capacity in normotensive patients without coronary artery disease. Diab Vasc Dis Res. 2015;12:181–8.

    Article  PubMed  Google Scholar 

  3. Komatsu WR, Gabbay MA, Castro ML, Saraiva GL, Chacra AR, et al. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes. 2005;6:145–9.

    Article  PubMed  Google Scholar 

  4. Komatsu WR, Barros Neto TL, Chacra AR, Dib SA. Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes. Diabetes Care. 2010;33:2555–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94:3687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care. 2005;28:2877–83.

    Article  CAS  PubMed  Google Scholar 

  7. Church TS, Cheng YJ, Earnest CP, Barlow CE, Gibbons LW, et al. Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care. 2004;27:83–8.

    Article  PubMed  Google Scholar 

  8. Lyerly GW, Sui X, Lavie CJ, Church TS, Hand GA, Blair SN. The association between cardiorespiratory fitness and risk of all-cause mortality among women with impaired fasting glucose or undiagnosed diabetes mellitus. Mayo Clin Proc. 2009;84:780–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. McAuley PA, Myers JN, Abella JP, Tan SY, Froelicher VF. Exercise capacity and body mass as predictors of mortality among male veterans with type 2 diabetes. Diabetes Care. 2007;30:1539–43.

    Article  PubMed  Google Scholar 

  10. Kokkinos P, Myers J, Nylen E, Panagiotakos DB, Manolis A, et al. Exercise capacity and all-cause mortality in African American and Caucasian men with type 2 diabetes. Diabetes Care. 2009;32:623–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nylen ES, Kokkinos P, Myers J, Faselis C. Prognostic effect of exercise capacity on mortality in older adults with diabetes mellitus. J Am Geriatr Soc. 2010;58:1850–4.

    Article  PubMed  Google Scholar 

  12. Estacio RO, Regensteiner JG, Wolfel EE, Jeffers B, Dickenson M, Schrier RW. The association between diabetic complications and exercise capacity in NIDDM patients. Diabetes Care. 1998;21:291–5.

    Article  CAS  PubMed  Google Scholar 

  13. Seyoum B, Estacio RO, Berhanu P, Schrier RW. Exercise capacity is a predictor of cardiovascular events in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2006;3:197–201.

    Article  PubMed  Google Scholar 

  14. Yu CM, Lau CP, Cheung BM, Fong YM, Ho YY, et al. Clinical predictors of morbidity and mortality in patients with myocardial infarction or revascularization who underwent cardiac rehabilitation, and importance of diabetes mellitus and exercise capacity. Am J Cardiol. 2000;85:344–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bjornstad P, Cree-Green M, Baumgartner A, Maahs DM, Cherney DZ, et al. Renal function is associated with peak exercise capacity in adolescents with type 1 diabetes. Diabetes Care. 2015;38:126–31.

    Article  CAS  PubMed  Google Scholar 

  16. Montero D, Díaz-Cañestro C.. Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction. Eur J Prev Cardiol 2015.

    Google Scholar 

  17. Montero D, Diaz-Cañestro C, Lundby C. Endurance training and V˙ O2max: role of maximal cardiac output and oxygen extraction. Med Sci Sports Exerc. 2015;47:2024–33.

    Article  CAS  PubMed  Google Scholar 

  18. Wagner PD. Counterpoint: in health and in normoxic environment VO2max is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol (1985). 2006;100:745–7. discussion 7–8

    Article  Google Scholar 

  19. Gusso S, Hofman P, Lalande S, Cutfield W, Robinson E, Baldi JC. Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetologia. 2008;51:1317–20.

    Article  CAS  PubMed  Google Scholar 

  20. Lalande S, Gusso S, Hofman PL, Baldi JC. Reduced leg blood flow during submaximal exercise in type 2 diabetes. Med Sci Sports Exerc. 2008;40:612–7.

    Article  PubMed  Google Scholar 

  21. Pinto TE, Gusso S, Hofman PL, Derraik JG, Hornung TS, et al. Systolic and diastolic abnormalities reduce the cardiac response to exercise in adolescents with type 2 diabetes. Diabetes Care. 2014;37:1439–46.

    Article  CAS  PubMed  Google Scholar 

  22. Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK. Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care. 2003;26:899–904.

    Article  PubMed  Google Scholar 

  23. Butcher JT, Goodwill AG, Stanley SC, Frisbee JC. Blunted temporal activity of microvascular perfusion heterogeneity in metabolic syndrome: a new attractor for peripheral vascular disease? Am J Physiol Heart Circ Physiol. 2013;304:H547–58.

    Article  CAS  PubMed  Google Scholar 

  24. Butcher JT, Stanley SC, Brooks SD, Chantler PD, Wu F, Frisbee JC. Impact of increased intramuscular perfusion heterogeneity on skeletal muscle microvascular hematocrit in the metabolic syndrome. Microcirculation. 2014;21:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frisbee JC, Wu F, Goodwill AG, Butcher JT, Beard DA. Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome. Am J Phys Regul Integr Comp Phys. 2011;301:R975–86.

    CAS  Google Scholar 

  26. Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Wu F, Chantler PD. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. J Physiol. 2014;594:2233.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kindig CA, Sexton WL, Fedde MR, Poole DC. Skeletal muscle microcirculatory structure and hemodynamics in diabetes. Respir Physiol. 1998;111:163–75.

    Article  CAS  PubMed  Google Scholar 

  28. Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, et al. Effects of type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol Heart Circ Physiol. 2006;291:H2439–44.

    Article  CAS  PubMed  Google Scholar 

  29. Baldi JC, Aoina JL, Oxenham HC, Bagg W, Doughty RN. Reduced exercise arteriovenous O2 difference in type 2 diabetes. J Appl Physiol (1985). 2003;94:1033–8.

    Article  Google Scholar 

  30. Grandi AM, Piantanida E, Franzetti I, Bernasconi M, Maresca A, et al. Effect of glycemic control on left ventricular diastolic function in type 1 diabetes mellitus. Am J Cardiol. 2006;97:71–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zabalgoitia M, Ismaeil MF, Anderson L, Maklady FA. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2001;87:320–3.

    Article  CAS  PubMed  Google Scholar 

  32. Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006;47:693–700.

    Article  CAS  PubMed  Google Scholar 

  33. Boonman-de Winter LJ, Hoes AW, Cramer MJ, de Jongh G, Janssen RR, Rutten FH. Prognosis of screen-detected heart failure with reduced and preserved ejection fraction in patients with type 2 diabetes. Int J Cardiol. 2015;185:162–4.

    Article  PubMed  Google Scholar 

  34. Lago RM, Singh PP, Nesto RW. Diabetes and hypertension. Nat Clin Pract Endocrinol Metab. 2007;3:667.

    Article  PubMed  Google Scholar 

  35. Maahs DM, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, et al. Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care. 2005;28:301–6.

    Article  PubMed  Google Scholar 

  36. Khan F, Elhadd TA, Greene SA, Belch JJ. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care. 2000;23:215–20.

    Article  CAS  PubMed  Google Scholar 

  37. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.

    Article  CAS  PubMed  Google Scholar 

  38. Järvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004;109:1750–5.

    Article  PubMed  Google Scholar 

  39. Anderson RA, Evans ML, Ellis GR, Graham J, Morris K, et al. The relationships between post-prandial lipaemia, endothelial function and oxidative stress in healthy individuals and patients with type 2 diabetes. Atherosclerosis. 2001;154:475–83.

    Article  CAS  PubMed  Google Scholar 

  40. Stehouwer CD, Henry RM, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51:527–39.

    Article  CAS  PubMed  Google Scholar 

  41. Goodman JM, McLaughlin PR, Plyley MJ, Holloway RM, Fell D, et al. Impaired cardiopulmonary response to exercise in moderate hypertension. Can J Cardiol. 1992;8:363–71.

    CAS  PubMed  Google Scholar 

  42. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55:1813–8.

    Article  CAS  PubMed  Google Scholar 

  43. Han TS, Feskens EJ, Lean ME, Seidell JC. Associations of body composition with type 2 diabetes mellitus. Diabet Med. 1998;15:129–35.

    Article  CAS  PubMed  Google Scholar 

  44. Clark MG, Rattigan S, Clerk LH, Vincent MA, Clark AD, et al. Nutritive and non-nutritive blood flow: rest and exercise. Acta Physiol Scand. 2000;168:519–30.

    Article  CAS  PubMed  Google Scholar 

  45. Ingberg CM, Särnblad S, Palmér M, Schvarcz E, Berne C, Aman J. Body composition in adolescent girls with type 1 diabetes. Diabet Med. 2003;20:1005–11.

    Article  PubMed  Google Scholar 

  46. Ingberg CM, Palmér M, Aman J, Arvidsson B, Schvarcz E, Berne C. Body composition and bone mineral density in long-standing type 1 diabetes. J Intern Med. 2004;255:392–8.

    Article  PubMed  Google Scholar 

  47. Reusch JE, Bridenstine M, Regensteiner JG. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord. 2013;14:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Poitras VJ, Bentley RF, Hopkins-Rosseel DH, LaHaye SA, Tschakovsky ME. Independent effect of type 2 diabetes beyond characteristic comorbidities and medications on immediate but not continued knee extensor exercise hyperemia. J Appl Physiol (1985). 2015;119:202–12.

    Article  Google Scholar 

  49. Kiely C, O'Connor E, O'Shea D, Green S, Egaña M. Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. J Appl Physiol (1985). 2014;117:755–64.

    Article  Google Scholar 

  50. Rissanen AP, Tikkanen HO, Koponen AS, Aho JM, Peltonen JE. Central and peripheral cardiovascular impairments limit VO(2peak) in type 1 diabetes. Med Sci Sports Exerc. 2015;47:223–30.

    Article  CAS  PubMed  Google Scholar 

  51. Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK. Type 2 diabetic individuals have impaired leg blood flow responses to exercise. Diabetes Care. 2003;26:899.

    Article  PubMed  Google Scholar 

  52. Bauer TA, Reusch JE, Levi M, Regensteiner JG. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care. 2007;30:2880–5.

    Article  PubMed  Google Scholar 

  53. Huebschmann AG, Reis EN, Emsermann C, Dickinson LM, Reusch JE, et al. Women with type 2 diabetes perceive harder effort during exercise than nondiabetic women. Appl Physiol Nutr Metab. 2009;34:851–7.

    Article  PubMed  Google Scholar 

  54. Saleh F, Mumu SJ, Ara F, Hafez MA, Ali L. Non-adherence to self-care practices & medication and health related quality of life among patients with type 2 diabetes: a cross-sectional study. BMC Public Health. 2014;14:431.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Egan AM, Mahmood WA, Fenton R, Redziniak N, Kyaw Tun T, et al. Barriers to exercise in obese patients with type 2 diabetes. QJM. 2013;106:635–8.

    Article  CAS  PubMed  Google Scholar 

  56. Skyrme-Jones RA, Berry KL, O'Brien RC, Meredith IT. Basal and exercise-induced skeletal muscle blood flow is augmented in type I diabetes mellitus. Clin Sci (Lond). 2000;98:111–20.

    Article  CAS  Google Scholar 

  57. Skyrme-Jones RA, O’Brien RC, Meredith IT. Vasodilator prostanoids, but not nitric oxide, may account for skeletal muscle hyperaemia in type I diabetes mellitus. Clin Sci (Lond). 2000;99:383–92.

    Article  CAS  Google Scholar 

  58. Regensteiner JG, Bauer TA, Huebschmann AG, Herlache L, Weinberger HD, et al. Sex differences in the effects of type 2 diabetes on exercise performance. Med Sci Sports Exerc. 2015;47:58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng J, Hasting MK, Zhang X, Coggan A, An H, et al. A pilot study of regional perfusion and oxygenation in calf muscles of individuals with diabetes with a noninvasive measure. J Vasc Surg. 2014;59:419–26.

    Article  PubMed  Google Scholar 

  60. Frisbee JC, Goodwill AG, Butcher JT, Olfert IM. Divergence between arterial perfusion and fatigue resistance in skeletal muscle in the metabolic syndrome. Exp Physiol. 2011;96:369–83.

    Article  PubMed  Google Scholar 

  61. Boulton AJ, Scarpello JH, Ward JD. Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia. 1982;22:6–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hammer M, Vilser W, Riemer T, Mandecka A, Schweitzer D, et al. Diabetic patients with retinopathy show increased retinal venous oxygen saturation. Graefes Arch Clin Exp Ophthalmol. 2009;247:1025–30.

    Article  PubMed  Google Scholar 

  63. McClatchey PM, Wu F, Olfert IM, Goldman E, Reusch JEB, Frisbee JC. Impaired tissue oxygenation in metabolic syndrome requires increased microvascular perfusion heterogeneity. J Cardiovasc Transl Res. 2017. In Press.

    Google Scholar 

  64. Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab. 2012;32:264–77.

    Article  CAS  PubMed  Google Scholar 

  65. Ostergaard L, Kristiansen SB, Angleys H, Frøkiær J, Michael Hasenkam J, et al. The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease. Basic Res Cardiol. 2014;109:409.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McClatchey PM, Frisbee JC, Reusch JEB. A conceptual framework for predicting and addressing the consequences of disease-related microvascular dy sfunction. Microcirculation. In Press. 2017.

    Google Scholar 

  67. Kalliokoski KK, Oikonen V, Takala TO, Sipilä H, Knuuti J, Nuutila P. Enhanced oxygen extraction and reduced flow heterogeneity in exercising muscle in endurance-trained men. Am J Physiol Endocrinol Metab. 2001;280:E1015–21.

    CAS  PubMed  Google Scholar 

  68. Kalliokoski KK, Knuuti J, Nuutila P. Blood transit time heterogeneity is associated to oxygen extraction in exercising human skeletal muscle. Microvasc Res. 2004;67:125–32.

    Article  PubMed  Google Scholar 

  69. Mårin P, Andersson B, Krotkiewski M, Björntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17:382–6.

    Article  PubMed  Google Scholar 

  70. Groen BB, Hamer HM, Snijders T, van Kranenburg J, Frijns D, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol (1985). 2014;116:998–1005.

    Article  CAS  Google Scholar 

  71. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55:1127–32.

    Article  CAS  PubMed  Google Scholar 

  73. Perrin RM, Harper SJ, Bates DO. A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys. 2007;49:65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med. 2006;259:393–400.

    Article  CAS  PubMed  Google Scholar 

  75. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55:480–6.

    Article  CAS  PubMed  Google Scholar 

  76. Van Teeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc med. 2007;17:101–5.

    Article  PubMed  Google Scholar 

  77. Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol. 2005;16:507–11.

    Article  CAS  PubMed  Google Scholar 

  78. Noble MI, Drake-Holland AJ, Vink H. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 2008;101:513–8.

    Article  CAS  PubMed  Google Scholar 

  79. Cabrales P, Vazquez BY, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol (1985). 2007;102:2251–9.

    Article  Google Scholar 

  80. Desjardins C, Duling BR. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Phys. 1990;258:H647–54.

    CAS  Google Scholar 

  81. Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol (1985). 2005;99:1471–6.

    Article  Google Scholar 

  82. Constantinescu AA, Vink H, Spaan JA. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol Heart Circ Physiol. 2001;280:H1051–7.

    CAS  PubMed  Google Scholar 

  83. Brands J, Spaan JA, Van den Berg BM, Vink H, VanTeeffelen JW. Acute attenuation of glycocalyx barrier properties increases coronary blood volume independently of coronary flow reserve. Am J Physiol Heart Circ Physiol. 2010;298:H515–23.

    Article  CAS  PubMed  Google Scholar 

  84. Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol. 2009;22:155–62.

    Article  PubMed  Google Scholar 

  85. Svennevig K, Kolset SO, Bangstad HJ. Increased syndecan-1 in serum is related to early nephropathy in type 1 diabetes mellitus patients. Diabetologia. 2006;49:2214–6.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang C, Meng Y, Liu Q, Xuan M, Zhang L, et al. Injury to the endothelial surface layer induces glomerular hyperfiltration rats with early-stage diabetes. J Diabetes res. 2014;2014:953740.

    PubMed  PubMed Central  Google Scholar 

  87. Eskens BJ, Mooij HL, Cleutjens JP, Roos JM, Cobelens JE, et al. Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats. PLoS One. 2013;8:e55399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bjornstad P, Snell-Bergeon JK, Rewers M, Jalal D, Chonchol MB, et al. Early diabetic nephropathy: a complication of reduced insulin sensitivity in type 1 diabetes. Diabetes Care. 2013;36:3678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McClatchey PM, Schafer M, Hunter KS, Reusch JE. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol. 2016;311:H168–76.

    Article  PubMed  Google Scholar 

  90. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF, Creager MA. Oral antioxidant therapy improves endothelial function in type 1 but not type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285:H2392–8.

    Article  CAS  PubMed  Google Scholar 

  91. Mullan BA, Young IS, Fee H, McCance DR. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension. 2002;40:804–9.

    Article  CAS  PubMed  Google Scholar 

  92. Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2011;43:1017–24.

    Article  CAS  PubMed  Google Scholar 

  93. Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106:8665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mason McClatchey MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McClatchey, P.M., Bauer, T.A., Regensteiner, J.G., Reusch, J.E.B. (2018). Exercise, Blood Flow, and the Skeletal Muscle Microcirculation in Diabetes Mellitus. In: Reusch, MD, J., Regensteiner, PhD, MA, BA, J., Stewart, Ed.D., FAHA, MAACVPR, FACSM , K., Veves, MD, DSc, A. (eds) Diabetes and Exercise. Contemporary Diabetes. Humana Press, Cham. https://doi.org/10.1007/978-3-319-61013-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61013-9_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-61011-5

  • Online ISBN: 978-3-319-61013-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics