Skip to main content

Worst-Case Optimal Algorithms

  • Chapter
  • First Online:
  • 1998 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 123))

Abstract

The question of the possibility to construct an optimal (in some sense) algorithm is of importance to the theory of multi-objective optimization similarly to any other theory of algorithmically solvable problems. In this chapter, we aim at finding a worst-case optimal approximation of the Pareto optimal set for multi-objective optimization problems, where the convexity of objective functions is not assumed. The class of Lipschitz functions is chosen as a model of objective functions since that model is one of the simplest and best researched models of global optimization [87]. Worst-case optimal algorithms are constructed for the cases of passive (non-adaptive) and sequential (adaptive) search in [249]. These results are the generalization to the multi-objective case of the results by Sukharev who investigated the worst-case optimal single-objective optimization algorithms in [210, 211].

This is a preview of subscription content, log in via an institution.

References

  1. Arora, S., Barak, B.: Computational Complexity a Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Chinchuluun, A., Pardalos, P., Migdalas, A., Pitsoulis, L.: Pareto Optimality, Game Theory and Equilibria. Springer Science-Business Media, New York (2008)

    MATH  Google Scholar 

  3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2009)

    MATH  Google Scholar 

  4. Du, D., Pardalos, P.: Minimax and Applications. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  5. Evtushenko, Yu.G., Posypkin, M.A.: Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy. Comput. Math. Math. Phys. 53(2), 144–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fonseca, C., Fleming, P.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Schwefel, H.P., Voigt, H.M. (eds.) Parallel Problem Solving from Nature, Berlin, September 22–26. Lecture Notes in Computer Science, vol. 1141, pp. 584–593. Springer, Berlin (1996)

    Google Scholar 

  7. Hooker, J.: Testing heuristics: we have it all wrong. J. Heuristics 1, 33–42 (1995)

    Article  MATH  Google Scholar 

  8. Horst, R., Pardalos, P.M., Thoai, N.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  9. Kvasov, D.E., Sergeyev, Ya.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi:10.1016/j.cam.2012.02.020

    Google Scholar 

  10. Kvasov, D.E., Sergeyev, Ya.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebra Control Optim. 2(1), 69–90 (2012). doi:10.3934/naco.2012.2.69

    Google Scholar 

  11. Lera, D., Sergeyev, Ya.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)

    Google Scholar 

  12. Mathar, R., Žilinskas, A.: A class of test functions for global optimization. J. Global Optim. 5, 195–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pardalos, P.M., Steponavice, I., Žilinskas, A.: Pareto set approximation by the method of adjustable weights and successive lexicographic goal programming. Optim. Lett. 6, 665–678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Control 36(4), 383–387 (2007)

    Google Scholar 

  15. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7

    Google Scholar 

  16. Pijavskii, S.: An algorithm for finding the absolute extremum of a function (in Russian). USSR Comput. Math. Math. Phys. 12, 57–67 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  18. Sayin, S.: Measuring the quality of discrete representation of efficient sets in multiple objective mathematical programming. Math. Program. 87 A, 543–560 (2000)

    Google Scholar 

  19. Scholz, D.: Deterministic Global Optimization: Geometric Branch-and-Bound Methods and Their Applications. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  20. Sergeyev, Ya.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006). doi:10.1137/040621132

  21. Sergeyev, Ya.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopaedia of Operations Research and Management Science, vol. 4, pp. 2812–2828. Wiley, Hoboken (2011)

    Google Scholar 

  22. Sergeyev, Ya.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)

    Google Scholar 

  23. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9(3), 379–388 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strongin, R.G., Sergeyev, Ya.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  25. Sukharev, A.: On optimal strategies of search for an extremum (in Russian). USSR Comput. Math. Math. Phys. 11(4), 910–924 (1971)

    Article  Google Scholar 

  26. Sukharev, A.: Best strategies of sequential search for an extremum (in Russian). USSR Comput. Math. Math. Phys. 12(1), 35–50 (1972)

    Article  Google Scholar 

  27. Sukharev, A.: A sequentially optimal algorithm for numerical integration. J. Optim. Theory Appl. 28(3), 363–373 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Törn, A., Žilinskas, A.: Global optimization. Lect. Notes Comput. Sci. 350, 1–252 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Traub, J.F., Wasilkowski, G.W., Wozniakowski, H.: Information, Uncertainty, Complexity. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  30. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  31. Žilinskas, A.: On the worst-case optimal multi-objective global optimization. Optim. Lett. 7, 1921–1928 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Žilinskas, A.: A one-step optimal algorithm for bi-objective univariate optimization. Optim. Lett. 8, 1945–1960 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimization. Int. J. Syst. Sci. 45(1), 82–93 (2014)

    Article  MATH  Google Scholar 

  34. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 89–98 (2015). doi:10.1016/j.cnsns.2014.08.025

    Article  MathSciNet  MATH  Google Scholar 

  35. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative study. In: Eiben, A. (ed.) Conference on Parallel Problem Solving From Nature, pp. 292–301. Springer, Amsterdam (1998)

    Google Scholar 

  36. Zitzler, E., Deb, K., Thiele, L.: Comparison of multi objective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  37. Zitzler, E., Thiele, L., Laummanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pardalos, P.M., Žilinskas, A., Žilinskas, J. (2017). Worst-Case Optimal Algorithms. In: Non-Convex Multi-Objective Optimization. Springer Optimization and Its Applications, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-319-61007-8_6

Download citation

Publish with us

Policies and ethics