Skip to main content

Controversies in Healthcare-Associated Infection Surveillance

  • Chapter
  • First Online:
Infection Prevention

Abstract

The purpose of this chapter is to summarize the controversies in surveillance of healthcare-associated infections (HAIs). A review of the existing literature on surveillance practices in healthcare settings was performed, and the results were summarized with particular emphasis on controversial areas. There are challenges to HAI surveillance including variability and subjectivity in surveillance processes and application of standard definitions, resource intensiveness of standard surveillance, and differences between clinical definitions and surveillance case definitions. Several emerging strategies have been used to address some of these limitations with varying degrees of success, including algorithmic and automated surveillance, use of objective laboratory based definitions, and risk adjustment. Ongoing efforts to improve HAI surveillance remain critical to provide accurate and valid data as the basis for performance improvement activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maruthappu M, Trehan A, Barnett-Vanes A, McCulloch P, Carty MJ. The impact of feedback of surgical outcome data on surgical performance: a systematic review. World J Surg. 2015;39(4):879–89.

    Article  PubMed  Google Scholar 

  2. Schroder C, Schwab F, Behnke M, et al. Epidemiology of healthcare associated infections in Germany: nearly 20 years of surveillance. Int J Med Microbiol. 2015;305(7):799–806.

    Article  CAS  PubMed  Google Scholar 

  3. Haley RW, Culver DH, White JW, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol. 1985;121(2):182–205.

    Article  CAS  PubMed  Google Scholar 

  4. Gaynes R, Richards C, Edwards J, et al. Feeding back surveillance data to prevent hospital-acquired infections. Emerg Infect Dis. 2001;7(2):295–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brandt C, Sohr D, Behnke M, Daschner F, Ruden H, Gastmeier P. Reduction of surgical site infection rates associated with active surveillance. Infect Control Hosp Epidemiol. 2006;27(12):1347–51.

    Article  CAS  PubMed  Google Scholar 

  6. Kanamori H, Weber DJ, DiBiase LM, et al. Longitudinal trends in all healthcare-associated infections through comprehensive hospital-wide surveillance and infection control measures over the past 12 years: substantial burden of healthcare-associated infections outside of intensive care units and “other” types of infection. Infect Control Hosp Epidemiol. 2015;36(10):1139–47.

    Article  PubMed  Google Scholar 

  7. Schroder C, Behnke M, Gastmeier P, Schwab F, Geffers C. Case vignettes to evaluate the accuracy of identifying healthcare-associated infections by surveillance persons. J Hosp Infect. 2015;90(4):322–6.

    Article  CAS  PubMed  Google Scholar 

  8. Russo PL, Barnett AG, Cheng AC, Richards M, Graves N, Hall L. Differences in identifying healthcare associated infections using clinical vignettes and the influence of respondent characteristics: a cross-sectional survey of Australian infection prevention staff. Antimicrob Resist Infect Control. 2015;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mayer J, Greene T, Howell J, et al. Agreement in classifying bloodstream infections among multiple reviewers conducting surveillance. Clin Infect Dis. 2012;55(3):364–70.

    Article  PubMed  Google Scholar 

  10. Klompas M. Interobserver variability in ventilator-associated pneumonia surveillance. Am J Infect Control. 2010;38(3):237–9.

    Article  PubMed  Google Scholar 

  11. Gastmeier P, Brauer H, Hauer T, Schumacher M, Daschner F, Ruden H. How many nosocomial infections are missed if identification is restricted to patients with either microbiology reports or antibiotic administration? Infect Control Hosp Epidemiol. 1999;20(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  12. Niedner MF, National Association of Children’s H, Related Institutions Pediatric Intensive Care Unit Patient Care FG. The harder you look, the more you find: catheter-associated bloodstream infection surveillance variability. Am J Infect Control. 2010;38(8):585–95.

    Article  PubMed  Google Scholar 

  13. Thompson DL, Makvandi M, Baumbach J. Validation of central line-associated bloodstream infection data in a voluntary reporting state: New Mexico. Am J Infect Control. 2013;41(2):122–5.

    Article  PubMed  Google Scholar 

  14. Backman LA, Melchreit R, Rodriguez R. Validation of the surveillance and reporting of central line-associated bloodstream infection data to a state health department. Am J Infect Control. 2010;38(10):832–8.

    Article  PubMed  Google Scholar 

  15. Rich KL, Reese SM, Bol KA, Gilmartin HM, Janosz T. Assessment of the quality of publicly reported central line-associated bloodstream infection data in Colorado, 2010. Am J Infect Control. 2013;41(10):874–9.

    Article  PubMed  Google Scholar 

  16. Oh JY, Cunningham MC, Beldavs ZG, et al. Statewide validation of hospital-reported central line-associated bloodstream infections: Oregon, 2009. Infect Control Hosp Epidemiol. 2012;33(5):439–45.

    Article  PubMed  Google Scholar 

  17. Lin MY, Woeltje KF, Khan YM, et al. Multicenter evaluation of computer automated versus traditional surveillance of hospital-acquired bloodstream infections. Infect Control Hosp Epidemiol. 2014;35(12):1483–90.

    Article  PubMed  Google Scholar 

  18. Thompson ND, Yeh LL, Magill SS, Ostroff SM, Fridkin SK. Investigating systematic misclassification of central line-associated bloodstream infection (CLABSI) to secondary bloodstream infection during health care-associated infection reporting. Am J Med Qual. 2013;28(1):56–9.

    Article  PubMed  Google Scholar 

  19. Leekha S, Li S, Thom KA, et al. Comparison of total hospital-acquired bloodstream infections to central line-associated bloodstream infections and implications for outcome measures in infection control. Infect Control Hosp Epidemiol. 2013;34(9):984–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nussenblatt V, Avdic E, Berenholtz S, et al. Ventilator-associated pneumonia: overdiagnosis and treatment are common in medical and surgical intensive care units. Infect Control Hosp Epidemiol. 2014;35(3):278–84.

    Article  PubMed  Google Scholar 

  21. Klompas M, Kulldorff M, Platt R. Risk of misleading ventilator-associated pneumonia rates with use of standard clinical and microbiological criteria. Clin Infect Dis. 2008;46(9):1443–6.

    Article  PubMed  Google Scholar 

  22. Klompas M. Eight initiatives that misleadingly lower ventilator-associated pneumonia rates. Am J Infect Control. 2012;40(5):408–10.

    Article  PubMed  Google Scholar 

  23. Mithoowani S, Celetti SJ, Irfan N, Brooks A, Mertz D. Inadequate documentation of urinary tract infection symptoms in the medical chart. Am J Infect Control. 2015;43(11):1252–4.

    Article  PubMed  Google Scholar 

  24. Al-Qas Hanna F, Sambirska O, Iyer S, Szpunar S, Fakih MG. Clinician practice and the National Healthcare Safety Network definition for the diagnosis of catheter-associated urinary tract infection. Am J Infect Control. 2013;41(12):1173–7.

    Article  PubMed  Google Scholar 

  25. Leekha S, Preas MA, Hebden J. Association of National Healthcare Safety Network – defined catheter-associated urinary tract infections with alternate sources of fever. Infect Control Hosp Epidemiol. 2015;36(10):1236–8.

    Article  PubMed  Google Scholar 

  26. Sands K, Vineyard G, Platt R. Surgical site infections occurring after hospital discharge. J Infect Dis. 1996;173(4):963–70.

    Article  CAS  PubMed  Google Scholar 

  27. Daneman N, Lu H, Redelmeier DA. Discharge after discharge: predicting surgical site infections after patients leave hospital. J Hosp Infect. 2010;75(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  28. Tanner J, Khan D, Aplin C, Ball J, Thomas M, Bankart J. Post-discharge surveillance to identify colorectal surgical site infection rates and related costs. J Hosp Infect. 2009;72(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  29. Barnes S, Salemi C, Fithian D, et al. An enhanced benchmark for prosthetic joint replacement infection rates. Am J Infect Control. 2006;34(10):669–72.

    Article  PubMed  Google Scholar 

  30. Yokoe DS, Avery TR, Platt R, Huang SS. Reporting surgical site infections following total hip and knee arthroplasty: impact of limiting surveillance to the operative hospital. Clin Infect Dis. 2013;57(9):1282–8.

    Article  PubMed  Google Scholar 

  31. Zarate R, Birnbaum D. Postdischarge surgical site infection surveillance practices in Washington acute care hospitals. Infect Control Hosp Epidemiol. 2012;33(1):87–9.

    Article  PubMed  Google Scholar 

  32. Reese SM, Knepper BC, Price CS, Young HL. An evaluation of surgical site infection surveillance methods for colon surgery and hysterectomy in Colorado hospitals. Infect Control Hosp Epidemiol. 2015;36(3):353–5.

    Article  PubMed  Google Scholar 

  33. Parrillo SL. The burden of National Healthcare Safety Network (NHSN) reporting on the infection Preventionist: a community hospital perspective. Am J Infect Control. 2015;43(6, Supplement):S17.

    Article  Google Scholar 

  34. Adherence to the Centers for Disease Control and Prevention’s (CDC’s) Infection definitions and criteria is needed to ensure accuracy, completeness, and comparability of infection information. http://www.cdc.gov/nhsn/cms/cms-reporting.html. 2016. Accessed Nov 2016.

  35. Epstein L, Edwards JR, Halpin AL, et al. Evaluation of a novel intervention to reduce unnecessary urine cultures in intensive care units at a tertiary Care Hospital in Maryland, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(5):606–9.

    Article  PubMed  Google Scholar 

  36. Longtin Y, Trottier S, Brochu G, et al. Impact of the type of diagnostic assay on Clostridium difficile infection and complication rates in a mandatory reporting program. Clin Infect Dis. 2013;56(1):67–73.

    Article  PubMed  Google Scholar 

  37. Fong KS, Fatica C, Hall G, et al. Impact of PCR testing for Clostridium difficile on incident rates and potential on public reporting: is the playing field level? Infect Control Hosp Epidemiol. 2011;32(9):932–3.

    Article  PubMed  Google Scholar 

  38. Moehring RW, Lofgren ET, Anderson DJ. Impact of change to molecular testing for Clostridium difficile infection on healthcare facility-associated incidence rates. Infect Control Hosp Epidemiol. 2013;34(10):1055–61.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wright MO, Kharasch M, Beaumont JL, Peterson LR, Robicsek A. Reporting catheter-associated urinary tract infections: denominator matters. Infect Control Hosp Epidemiol. 2011;32(7):635–40.

    Article  PubMed  Google Scholar 

  40. Horstman MJ, Li YF, Almenoff PL, Freyberg RW, Trautner BW. Denominator doesn’t matter: standardizing healthcare-associated infection rates by bed days or device days. Infect Control Hosp Epidemiol. 2015;36(6):710–6.

    Article  PubMed  Google Scholar 

  41. Fakih MG, Gould CV, Trautner BW, et al. Beyond infection: device utilization ratio as a performance measure for urinary catheter harm. Infect Control Hosp Epidemiol. 2016;37(3):327–33.

    Article  PubMed  Google Scholar 

  42. Calderon LE, Kavanagh KT, Rice MK. Questionable validity of the catheter-associated urinary tract infection metric used for value-based purchasing. Am J Infect Control. 2015;43(10):1050–2.

    Article  PubMed  Google Scholar 

  43. Scheithauer S, Hafner H, Schroder J, et al. Simultaneous placement of multiple central lines increases central line-associated bloodstream infection rates. Am J Infect Control. 2013;41(2):113–7.

    Article  PubMed  Google Scholar 

  44. Pepin CS, Thom KA, Sorkin JD, et al. Risk factors for central-line-associated bloodstream infections: a focus on comorbid conditions. Infect Control Hosp Epidemiol. 2015;36(4):479–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kanerva M, Ollgren J, Lyytikainen O, Finnish Prevalence Survey Study G. Interhospital differences and case-mix in a nationwide prevalence survey. J Hosp Infect. 2010;76(2):135–8.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson DJ, Chen LF, Sexton DJ, Kaye KS. Complex surgical site infections and the devilish details of risk adjustment: important implications for public reporting. Infect Control Hosp Epidemiol. 2008;29(10):941–6.

    Article  PubMed  Google Scholar 

  47. Anderson DJ, Hartwig MG, Pappas T, et al. Surgical volume and the risk of surgical site infection in community hospitals: size matters. Ann Surg. 2008;247(2):343–9.

    Article  PubMed  Google Scholar 

  48. Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. Infect Control Hosp Epidemiol. 2011;32(10):970–86.

    Article  PubMed  Google Scholar 

  49. Moehring RW, Anderson DJ. “But my patients are different!”: risk adjustment in 2012 and beyond. Infect Control Hosp Epidemiol. 2011;32(10):987–9.

    Article  PubMed  Google Scholar 

  50. Jackson SS, Leekha S, Pineles L, et al. Improving risk adjustment above current centers for disease control and prevention methodology using electronically available comorbid conditions. Infect Control Hosp Epidemiol. 2016;37(10):1173–8.

    Article  PubMed  Google Scholar 

  51. Daneman N, Simor AE, Redelmeier DA. Validation of a modified version of the national nosocomial infections surveillance system risk index for health services research. Infect Control Hosp Epidemiol. 2009;30(6):563–9.

    Article  PubMed  Google Scholar 

  52. Morgan DM, Swenson CW, Streifel KM, et al. Surgical site infection following hysterectomy: adjusted rankings in a regional collaborative. Am J Obstet Gynecol. 2016;214(2):259 e1–8.

    Article  Google Scholar 

  53. Kritsotakis EI, Dimitriadis I, Roumbelaki M, et al. Case-mix adjustment approach to benchmarking prevalence rates of nosocomial infection in hospitals in Cyprus and Greece. Infect Control Hosp Epidemiol. 2008;29(8):685–92.

    Article  PubMed  Google Scholar 

  54. Steinberg SM, Popa MR, Michalek JA, Bethel MJ, Ellison EC. Comparison of risk adjustment methodologies in surgical quality improvement. Surgery. 2008;144(4):662–7. discussion -7

    Article  PubMed  Google Scholar 

  55. Calderwood MS, Ma A, Khan YM, et al. Use of Medicare diagnosis and procedure codes to improve detection of surgical site infections following hip arthroplasty, knee arthroplasty, and vascular surgery. Infect Control Hosp Epidemiol. 2012;33(1):40–9.

    Article  PubMed  Google Scholar 

  56. Huang SS, Livingston JM, Rawson NS, Schmaltz S, Platt R. Developing algorithms for healthcare insurers to systematically monitor surgical site infection rates. BMC Med Res Methodol. 2007;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sands KE, Yokoe DS, Hooper DC, et al. Detection of postoperative surgical-site infections: comparison of health plan-based surveillance with hospital-based programs. Infect Control Hosp Epidemiol. 2003;24(10):741–3.

    Article  PubMed  Google Scholar 

  58. Miner AL, Sands KE, Yokoe DS, et al. Enhanced identification of postoperative infections among outpatients. Emerg Infect Dis. 2004;10(11):1931–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Apte M, Landers T, Furuya Y, Hyman S, Larson E. Comparison of two computer algorithms to identify surgical site infections. Surg Infect. 2011;12(6):459–64.

    Article  Google Scholar 

  60. Calderwood MS, Kleinman K, Bratzler DW, et al. Use of Medicare claims to identify US hospitals with a high rate of surgical site infection after hip arthroplasty. Infect Control Hosp Epidemiol. 2013;34(1):31–9.

    Article  PubMed  Google Scholar 

  61. Lawson EH, Louie R, Zingmond DS, et al. A comparison of clinical registry versus administrative claims data for reporting of 30-day surgical complications. Ann Surg. 2012;256(6):973–81.

    Article  PubMed  Google Scholar 

  62. Sherman ER, Heydon KH, St John KH, et al. Administrative data fail to accurately identify cases of healthcare-associated infection. Infect Control Hosp Epidemiol. 2006;27(4):332–7.

    Article  PubMed  Google Scholar 

  63. Brennan PJ. In the beginning there was...heat. Infect Control Hosp Epidemiol. 2006;27(4):329–31.

    Article  CAS  PubMed  Google Scholar 

  64. Stevenson KB, Khan Y, Dickman J, et al. Administrative coding data, compared with CDC/NHSN criteria, are poor indicators of health care-associated infections. Am J Infect Control. 2008;36(3):155–64.

    Article  PubMed  Google Scholar 

  65. Bolon MK, Hooper D, Stevenson KB, et al. Improved surveillance for surgical site infections after orthopedic implantation procedures: extending applications for automated data. Clin Infect Dis. 2009;48(9):1223–9.

    Article  PubMed  Google Scholar 

  66. Branch-Elliman W, Strymish J, Itani KM, Gupta K. Using clinical variables to guide surgical site infection detection: a novel surveillance strategy. Am J Infect Control. 2014;42(12):1291–5.

    Article  PubMed  Google Scholar 

  67. Yokoe DS, Shapiro M, Simchen E, Platt R. Use of antibiotic exposure to detect postoperative infections. Infect Control Hosp Epidemiol. 1998;19(5):317–22.

    Article  CAS  PubMed  Google Scholar 

  68. Sands K, Vineyard G, Livingston J, Christiansen C, Platt R. Efficient identification of postdischarge surgical site infections: use of automated pharmacy dispensing information, administrative data, and medical record information. J Infect dis. 1999;179(2):434–41.

    Article  CAS  PubMed  Google Scholar 

  69. Tehrani DM, Russell D, Brown J, et al. Discord among performance measures for central line-associated bloodstream infection. Infect Control Hosp Epidemiol. 2013;34(2):176–83.

    Article  PubMed  Google Scholar 

  70. Moehring RW, Staheli R, Miller BA, Chen LF, Sexton DJ, Anderson DJ. Central line-associated infections as defined by the Centers for Medicare and Medicaid Services’ Hospital-acquired condition versus standard infection control surveillance: why hospital compare seems conflicted. Infect Control Hosp Epidemiol. 2013;34(3):238–44.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schweizer ML, Eber MR, Laxminarayan R, et al. Validity of ICD-9-CM coding for identifying incident methicillin-resistant Staphylococcus aureus (MRSA) infections: is MRSA infection coded as a chronic disease? Infect Control Hosp Epidemiol. 2011;32(2):148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schaefer MK, Ellingson K, Conover C, et al. Evaluation of international classification of diseases, ninth revision, clinical modification codes for reporting methicillin-resistant Staphylococcus aureus infections at a hospital in Illinois. Infect Control Hosp Epidemiol. 2010;31(5):463–8.

    Article  PubMed  Google Scholar 

  73. Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases provide inaccurate data for surveillance of long-term central venous catheter-associated infections. Infect Control Hosp Epidemiol. 2003;24(12):946–9.

    Article  PubMed  Google Scholar 

  74. Cevasco M, Borzecki AM, O'Brien WJ, et al. Validity of the AHRQ patient safety indicator “central venous catheter-related bloodstream infections”. J Am Coll Surg. 2011;212(6):984–90.

    Article  PubMed  Google Scholar 

  75. Woeltje KF, McMullen KM, Butler AM, Goris AJ, Doherty JA. Electronic surveillance for healthcare-associated central line-associated bloodstream infections outside the intensive care unit. Infect Control Hosp Epidemiol. 2011;32(11):1086–90.

    Article  PubMed  Google Scholar 

  76. Leal J, Gregson DB, Ross T, Flemons WW, Church DL, Laupland KB. Development of a novel electronic surveillance system for monitoring of bloodstream infections. Infect Control Hosp Epidemiol. 2010;31(7):740–7.

    Article  PubMed  Google Scholar 

  77. Hota B, Malpiedi P, Fridkin SK, Martin J, Trick W. Probabilistic measurement of central line-associated bloodstream infections. Infect Control Hosp Epidemiol. 2016;37(2):149–55.

    Article  PubMed  Google Scholar 

  78. Schmiedeskamp M, Harpe S, Polk R, Oinonen M, Pakyz A. Use of international classification of diseases, ninth revision, clinical modification codes and medication use data to identify nosocomial Clostridium difficile infection. Infect Control Hosp Epidemiol. 2009;30(11):1070–6.

    Article  PubMed  Google Scholar 

  79. Dubberke ER, Reske KA, McDonald LC, Fraser VJ. ICD-9 codes and surveillance for Clostridium difficile-associated disease. Emerg Infect Dis. 2006;12(10):1576–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin Infect Dis. 2014;58(5):688–96.

    Article  PubMed  CAS  Google Scholar 

  81. van Mourik MS, van Duijn PJ, Moons KG, Bonten MJ, Lee GM. Accuracy of administrative data for surveillance of healthcare-associated infections: a systematic review. BMJ Open. 2015;5(8):e008424.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Freeman R, Moore LS, Garcia Alvarez L, Charlett A, Holmes A. Advances in electronic surveillance for healthcare-associated infections in the 21st century: a systematic review. J Hosp Infect. 2013;84(2):106–19.

    Article  CAS  PubMed  Google Scholar 

  83. van Mourik MS, Troelstra A, van Solinge WW, Moons KG, Bonten MJ. Automated surveillance for healthcare-associated infections: opportunities for improvement. Clin Infect Dis. 2013;57(1):85–93.

    Article  PubMed  Google Scholar 

  84. Wald HL, Bandle B, Richard A, Min S. Accuracy of electronic surveillance of catheter-associated urinary tract infection at an academic medical center. Infect Control Hosp Epidemiol. 2014;35(6):685–91.

    Article  CAS  PubMed  Google Scholar 

  85. Choudhuri JA, Pergamit RF, Chan JD, et al. An electronic catheter-associated urinary tract infection surveillance tool. Infect Control Hosp Epidemiol. 2011;32(8):757–62.

    Article  PubMed  Google Scholar 

  86. Snyders RE, Goris AJ, Gase KA, Leone CL, Doherty JA, Woeltje KF. Increasing the reliability of fully automated surveillance for central line-associated bloodstream infections. Infect Control Hosp Epidemiol. 2015;36(12):1396–400.

    Article  PubMed  Google Scholar 

  87. Lin MY, Hota B, Khan YM, et al. Quality of traditional surveillance for public reporting of nosocomial bloodstream infection rates. JAMA. 2010;304(18):2035–41.

    Article  CAS  PubMed  Google Scholar 

  88. Platt R, Yokoe DS, Sands KE. Automated methods for surveillance of surgical site infections. Emerg Infect Dis. 2001;7(2):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rochefort CM, Buckeridge DL, Forster AJ. Accuracy of using automated methods for detecting adverse events from electronic health record data: a research protocol. Implement Sci. 2015;10:5.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thompson ND, Edwards JR, Dudeck MA, Fridkin SK, Magill SS. Evaluating the use of the case mix index for risk adjustment of healthcare-associated infection data: an illustration using Clostridium difficile infection data from the National Healthcare Safety Network. Infect Control Hosp Epidemiol. 2016;37(1):19–25.

    Article  PubMed  Google Scholar 

  91. Tehrani DM, Phelan MJ, Cao C, et al. Substantial shifts in ranking of California hospitals by hospital-associated methicillin-resistant Staphylococcus aureus infection following adjustment for hospital characteristics and case mix. Infect Control Hosp Epidemiol. 2014;35(10):1263–70.

    Article  PubMed  Google Scholar 

  92. Carroll KC, Bartlett JG. Biology of Clostridium Difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol. 2011;65:501–21.

    Article  CAS  PubMed  Google Scholar 

  93. Murphy CR, Hudson LO, Spratt BG, et al. Predictors of hospitals with endemic community-associated methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2013;34(6):581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zilberberg MD, Tabak YP, Sievert DM, et al. Using electronic health information to risk-stratify rates of Clostridium difficile infection in US hospitals. Infect Control Hosp Epidemiol. 2011;32(7):649–55.

    Article  PubMed  Google Scholar 

  95. Epstein L, Mu Y, Belflower R, et al. Risk factors for invasive methicillin-resistant Staphylococcus aureus infection after recent discharge from an acute-care hospitalization, 2011–2013. Clin Infect Dis. 2016;62(1):45–52.

    Article  PubMed  Google Scholar 

  96. Murphy CR, Avery TR, Dubberke ER, Huang SS. Frequent hospital readmissions for Clostridium difficile infection and the impact on estimates of hospital-associated C. difficile burden. Infect Control Hosp Epidemiol. 2012;33(1):20–8.

    Article  PubMed  Google Scholar 

  97. Huang SS, Hinrichsen VL, Datta R, et al. Methicillin-resistant Staphylococcus aureus infection and hospitalization in high-risk patients in the year following detection. PLoS One. 2011;6(9):e24340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Avery TR, Kleinman KP, Klompas M, Aschengrau A, Huang SS. Inclusion of 30-day postdischarge detection triples the incidence of hospital-onset methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2012;33(2):114–21.

    Article  PubMed  Google Scholar 

  99. Rock C, Thom KA, Harris AD, et al. A multicenter longitudinal study of hospital-onset bacteremia: time for a new quality outcome measure? Infect Control Hosp Epidemiol. 2016;37(2):143–8.

    Article  PubMed  Google Scholar 

  100. Klompas M, Khan Y, Kleinman K, et al. Multicenter evaluation of a novel surveillance paradigm for complications of mechanical ventilation. PLoS One. 2011;6(3):e18062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Klompas M. Complications of mechanical ventilation – the CDC’s new surveillance paradigm. N Engl J Med. 2013;368(16):1472–5.

    Article  CAS  PubMed  Google Scholar 

  102. Klompas M, Kleinman K, Khan Y, et al. Rapid and reproducible surveillance for ventilator-associated pneumonia. Clin Infect Dis. 2012;54(3):370–7.

    Article  PubMed  Google Scholar 

  103. Klein Klouwenberg PM, van Mourik MS, Ong DS, et al. Electronic implementation of a novel surveillance paradigm for ventilator-associated events. Feasibility and validation. Am J Respir Crit Care Med. 2014;189(8):947–55.

    Article  PubMed  Google Scholar 

  104. Stoeppel CM, Eriksson EA, Hawkins K, et al. Applicability of the National Healthcare Safety Network’s surveillance definition of ventilator-associated events in the surgical intensive care unit: a 1-year review. J Trauma Acute Care Surg. 2014;77(6):934–7.

    Article  PubMed  Google Scholar 

  105. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.

    Article  PubMed  Google Scholar 

  106. Hawn MT, Vick CC, Richman J, et al. Surgical site infection prevention: time to move beyond the surgical care improvement program. Ann Surg. 2011;254(3):494–9. discussion 9–501

    Article  PubMed  Google Scholar 

  107. Dua A, Desai SS, Seabrook GR, et al. The effect of surgical care improvement project measures on national trends on surgical site infections in open vascular procedures. J Vasc Surg. 2014;60(6):1635–9.

    Article  PubMed  Google Scholar 

  108. Munday GS, Deveaux P, Roberts H, Fry DE, Polk HC. Impact of implementation of the surgical care improvement project and future strategies for improving quality in surgery. Am J Surg. 2014;208(5):835–40.

    Article  PubMed  Google Scholar 

  109. Cataife G, Weinberg DA, Wong HH, Kahn KL. The effect of surgical care improvement project (SCIP) compliance on surgical site infections (SSI). Med Care. 2014;52(2 Suppl 1):S66–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surbhi Leekha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sood, G., Leekha, S. (2018). Controversies in Healthcare-Associated Infection Surveillance. In: Bearman, G., Munoz-Price, S., Morgan, D., Murthy, R. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-60980-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60980-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60978-2

  • Online ISBN: 978-3-319-60980-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics