Skip to main content

Whole Genome Sequencing for Outbreak Investigation

  • Chapter
  • First Online:

Abstract

Whole genome microbial sequencing provides information at a level of resolution previously unattainable with the molecular biology techniques that have long served as tools for investigating transmission. In the past five years, sequencing has become an indispensable tool for investigating outbreaks on all scales, from local hospital clusters to pandemics. As sequencing platforms and bioinformatics analysis become faster and more accessible, real-time whole genome sequencing is increasingly integral to the fields of public health and hospital epidemiology. The infection control and public health communities must devise ways to translate real-time sequence data into real-time action that can change the course of an outbreak.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  2. Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  3. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  4. Baker M. De novo genome assembly: what every biologist should know. Nat Methods. 2012;9(4):333–7.

    Article  CAS  Google Scholar 

  5. Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol. 2013;14(7):405.

    Article  PubMed  Google Scholar 

  6. Conlan S, Thomas PJ, Deming C, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6(254):254ra126.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994;7(2):174–84.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Larsen AR, Goering R, Stegger M, et al. Two distinct clones of methicillin-resistant Staphylococcus aureus (MRSA) with the same USA300 pulsed-field gel electrophoresis profile: a potential pitfall for identification of USA300 community-associated MRSA. J Clin Microbiol. 2009;47(11):3765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. National Human Genome Research Institute. Data from the NHGRI Genome Sequencing Program (GSP). Available at: https://www.genome.gov/sequencingcostsdata/. Accessed 2 Feb 2017.

  12. Dekker JP, Frank KM. Next-generation epidemiology: using real-time core genome multilocus sequence typing to support infection control policy. J Clin Microbiol. 2016;54(12):2850–3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kluytmans-van den Bergh MF, Rossen JW, Bruijning-Verhagen PC, et al. Whole-genome multilocus sequence typing of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54(12):2919–27.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4:148ra16.

    Article  Google Scholar 

  15. Bottichio L, Medus C, Sorenson A, et al. Outbreak of salmonella Oslo infections linked to Persian cucumbers – United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65(5051):1430–3.

    Article  PubMed  Google Scholar 

  16. Weiss D, Boyd C, Rakeman JL, et al. A large community outbreak of Legionnaires’ disease associated with a cooling tower in New York City, 2015. Public Health Rep. 2017;132(2):241–50.

    Article  PubMed  Google Scholar 

  17. Chen L, Chavda KD, Melano RG, et al. Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York Hospitals. Antimicrob Agents Chemother. 2014;58(5):2871–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mathers AJ, Cox HL, Kitchel B, et al. Molecular dissection of an outbreak of carbapenem-resistant enterobacteriaceae reveals Intergenus KPC carbapenemase transmission through a promiscuous plasmid. MBio. 2011;2(6):e00204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin J, Cui Y, Zhao X, et al. Identification of the Shiga toxin-producing Escherichia coli O104:H4 strain responsible for a food poisoning outbreak in Germany by PCR. J Clin Microbiol. 2011;49(9):3439–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang JY, Brooks S, Meyer JA, et al. Pan-PCR, a computational method for designing bacterium-typing assays based on whole-genome sequence data. J Clin Microbiol. 2013;51(3):752–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jenson D, Szabo V, Duke FHIHHLSRT. Cholera in Haiti and other Caribbean regions, 19th century. Emerg Infect Dis. 2011;17(11):2130–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mutreja A, Kim DW, Thomson NR, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011;477(7365):462–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chin CS, Sorenson J, Harris JB, et al. The origin of the Haitian cholera outbreak strain. N Engl J Med. 2011;364(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  24. Eppinger M, Pearson T, Koenig SS, et al. Genomic epidemiology of the Haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic. MBio. 2014;5(6):e01721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katz JM. The U.N.’s cholera admission and what comes next. New York Times Magazine. 2016 August 19. 2016.

    Google Scholar 

  26. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  27. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40.

    Article  PubMed  Google Scholar 

  28. Vallabhaneni S, Kallen A, Tsay S, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus – United States, May 2013-August 2016. MMWR Morb Mortal Wkly Rep. 2016;65(44):1234–7.

    Article  PubMed  Google Scholar 

  29. Centers for Disease Control and Prevention. Candida auris. Available at: https://www.cdc.gov/fungal/diseases/candidiasis/candida-auris.html. Accessed 20 Mar 2017.

  30. Koser CU, Holden MT, Ellington MJ, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 2012;366(24):2267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schlebusch S, Price GR, Gallagher RL, et al. MALDI-TOF MS meets WGS in a VRE outbreak investigation. Eur J Clin Microbiol Infect Dis. 2017;36(3):495–9.

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez A, Castro JG, Munoz-Price LS, et al. Outbreak of Klebsiella pneumoniae carbapenemase-producing Citrobacter freundii at a tertiary acute care facility in Miami. Fla Infect Control Hosp Epidemiol. 2017;38(3):320–6.

    Article  Google Scholar 

  33. Jauneikaite E, Khan-Orakzai Z, Kapatai G, et al. Nosocomial outbreak of drug-resistant Streptococcus pneumoniae serotype 9V in an adult respiratory medicine ward. J Clin Microbiol. 2017;55(3):776–82.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hagiya H, Aoki K, Akeda Y, et al. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae elucidated by single-nucleotide variation analysis: a case investigation. Infection. 2017;45:221–5.

    Article  CAS  PubMed  Google Scholar 

  35. Sabat AJ, Hermelijn SM, Akkerboom V, et al. Complete-genome sequencing elucidates outbreak dynamics of CA-MRSA USA300 (ST8-spa t008) in an academic hospital of Paramaribo, Republic of Suriname. Sci Rep. 2017;7:41050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weterings V, Zhou K, Rossen JW, et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis. 2015;34(8):1647–55.

    Article  CAS  PubMed  Google Scholar 

  37. Marsh JW, Krauland MG, Nelson JS, et al. Genomic epidemiology of an endoscope-associated outbreak of Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae. PLoS One. 2015;10(12):e0144310.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Skalova A, Chudejova K, Rotova V, et al. Molecular characterization of OXA-48-like-producing enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother. 2017;61(2):e01889–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mathers AJ, Stoesser N, Sheppard AE, et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother. 2015;59(3):1656–63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Popovich KJ, Snitkin E, Green SJ, et al. Genomic epidemiology of USA300 methicillin-resistant Staphylococcus aureus in an urban community. Clin Infect Dis. 2016;62(1):37–44.

    Article  PubMed  Google Scholar 

  41. Pecora ND, Li N, Allard M, et al. Genomically informed surveillance for carbapenem-resistant Enterobacteriaceae in a health care system. MBio. 2015;6(4):e01030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou K, Lokate M, Deurenberg RH, et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum beta-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep. 2016;6:20840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.

    Article  PubMed  Google Scholar 

  44. Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother. 2007;51(8):3026–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Del Franco M, Paone L, Novati R, et al. Molecular epidemiology of carbapenem resistant Enterobacteriaceae in Valle d’Aosta region, Italy, shows the emergence of KPC-2 producing Klebsiella pneumoniae clonal complex 101 (ST101 and ST1789). BMC Microbiol. 2015;15(1):260.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Norheim G, Seterelv S, Arnesen TM, et al. Tuberculosis outbreak in an educational institution in Norway. J Clin Microbiol. 2017;55:1327–33.

    Article  PubMed  Google Scholar 

  47. Walker TM, Ip CL, Harrell RH, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13(2):137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gardy JL, Johnston JC, Ho Sui SJ, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med. 2011;364:730–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harris KA, Underwood A, Kenna DT, et al. Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. Clin Infect Dis. 2015;60(7):1007–16.

    CAS  PubMed  Google Scholar 

  51. Chand M, Lamagni T, Kranzer K, et al. Insidious risk of severe Mycobacterium chimaera infection in cardiac surgery patients. Clin Infect Dis. 2017;64(3):335–42.

    Article  PubMed  Google Scholar 

  52. Kohler P, Kuster SP, Bloemberg G, et al. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur Heart J. 2015;36(40):2745–53.

    Article  PubMed  Google Scholar 

  53. Svensson E, Jensen ET, Rasmussen EM, Folkvardsen DB, Norman A, Lillebaek T. Mycobacterium chimaera in heater-cooler units in Denmark related to isolates from the United States and United Kingdom. Emerg Infect Dis. 2017;23(3):507–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sax H, Bloemberg G, Hasse B, et al. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015;61(1):67–75.

    Article  PubMed  Google Scholar 

  55. Schreiber PW, Kuster SP, Hasse B, et al. Reemergence of Mycobacterium chimaera in heater-cooler units despite intensified cleaning and disinfection protocol. Emerg Infect Dis. 2016;22(10):1830–3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Perkins KM, Lawsin A, Hasan NA, et al. Notes from the field: mycobacterium chimaera contamination of heater-cooler devices used in cardiac surgery – United States. MMWR Morb Mortal Wkly Rep. 2016;65(40):1117–8.

    Article  PubMed  Google Scholar 

  57. Robinson JO, Coombs GW, Speers DJ, et al. Mycobacterium chimaera colonisation of heater-cooler units (HCU) in Western Australia, 2015: investigation of possible iatrogenic infection using whole genome sequencing. Euro Surveill. 2016;21(46):pii=30396.

    Google Scholar 

  58. Haller S, Holler C, Jacobshagen A, et al. Contamination during production of heater-cooler units by Mycobacterium chimaera potential cause for invasive cardiovascular infections: results of an outbreak investigation in Germany, April 2015 to February 2016. Euro Surveill. 2016;21(17):pii=30215.

    Google Scholar 

  59. Kanamori H, Weber DJ, Rutala WA. Healthcare-associated Mycobacterium chimaera transmission and infection prevention challenges: role of heater-cooler units as a water source in cardiac surgery. Clin Infect Dis. 2017;64(3):343–6.

    Article  PubMed  Google Scholar 

  60. Chen Y, Luo Y, Curry P, et al. Assessing the genome level diversity of Listeria monocytogenes from contaminated ice cream and environmental samples linked to a listeriosis outbreak in the United States. PLoS One. 2017;12(2):e0171389.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jackson KA, Stroika S, Katz LS, et al. Use of whole genome sequencing and patient interviews to link a case of sporadic Listeriosis to consumption of prepackaged lettuce. J Food Prot. 2016;79(5):806–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zoufaly A, Cramer JP, Vettorazzi E, et al. Risk factors for development of hemolytic uremic syndrome in a cohort of adult patients with STEC 0104:H4 infection. PLoS One. 2013;8(3):e59209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rohde H, Qin J, Cui Y, et al. Open-source genomic analysis of shiga-toxin-producing E. coli O104:H4. N Engl J Med. 2011;365(8):718–24.

    Article  CAS  PubMed  Google Scholar 

  64. Jackson BR, Tarr C, Strain E, et al. Implementation of nationwide real-time whole-genome sequencing to enhance Listeriosis outbreak detection and investigation. Clin Infect Dis. 2016;63(3):380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mellmann A, Bletz S, Boking T, et al. Real-time genome sequencing of resistant bacteria provides precision infection control in an institutional setting. J Clin Microbiol. 2016;54(12):2874–81.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Davis-Turak J, Courtney SM, Hazard ES, et al. Genomics pipelines and data integration: challenges and opportunities in the research setting. Expert Rev Mol Diagn. 2017;17(3):225–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program of the NIH Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara N. Palmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Palmore, T.N. (2018). Whole Genome Sequencing for Outbreak Investigation. In: Bearman, G., Munoz-Price, S., Morgan, D., Murthy, R. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-60980-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60980-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60978-2

  • Online ISBN: 978-3-319-60980-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics