Skip to main content

Multidrug-Resistant Gram-Negative Bacilli: Infection Prevention Considerations

  • Chapter
  • First Online:
Infection Prevention

Abstract

Antimicrobial resistance is a common iatrogenic complication of modern healthcare. Gram-negative organisms pose the biggest challenge to healthcare today, predominantly due to lack of effective therapeutic options. Containing the spread of these organisms is challenging, and in reality, the application of multiple control measures during an evolving outbreak or while high endemic rates are recorded makes it difficult to measure the relative impact of each measure. This chapter will review the utility of various infection control measures in containing the spread of multidrug-resistant Gram-negative bacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–9.

    Article  CAS  PubMed  Google Scholar 

  2. Marchaim D, et al. Epidemiology of bacteremia episodes in a single center: increase in Gram-negative isolates, antibiotics resistance, and patient age. Eur J Clin Microbiol Infect Dis. 2008;27(11):1045–51.

    Article  CAS  PubMed  Google Scholar 

  3. Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf, 2013.

  4. Marchaim D, et al. National multicenter study of predictors and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2010;54(12):5099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adler A, Katz DE, Marchaim D. The continuing plague of extended-spectrum beta-lactamase-producing Enterobacteriaceae infections. Infect Dis Clin N Am. 2016;30(2):347–75.

    Article  Google Scholar 

  6. Boucher HW, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.

    Article  PubMed  Google Scholar 

  7. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079–81.

    Article  PubMed  Google Scholar 

  8. Peterson LR. Bad bugs, no drugs: no ESCAPE revisited. Clin Infect Dis. 2009;49(6):992–3.

    Article  PubMed  Google Scholar 

  9. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010;362(19):1804–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tal-Jasper R, et al. Clinical and epidemiological significance of Carbapenem resistance in Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2016;60(5):3127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tacconelli E, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20(Suppl 1):1–55.

    Article  PubMed  Google Scholar 

  12. Richter SS, Brown SA, Mott MA. The impact of social support and self-esteem on adolescent substance abuse treatment outcome. J Subst Abus. 1991;3(4):371–85.

    Article  CAS  Google Scholar 

  13. Tal Jasper R, et al. The complex epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae. Future Microbiol. 2015;10(5):819–39.

    Article  CAS  PubMed  Google Scholar 

  14. Harris AD, McGregor JC, Furuno JP. What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin Infect Dis. 2006;43(Suppl 2):S57–61.

    Article  PubMed  Google Scholar 

  15. Harris AD, et al. Patient-to-patient transmission is important in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae acquisition. Clin Infect Dis. 2007;45(10):1347–50.

    Article  CAS  PubMed  Google Scholar 

  16. Harris AD, et al. How important is patient-to-patient transmission in extended-spectrum beta-lactamase Escherichia coli acquisition. Am J Infect Control. 2007;35(2):97–101.

    Article  PubMed  Google Scholar 

  17. Harris AD. How important is the environment in the emergence of nosocomial antimicrobial-resistant bacteria? Clin Infect Dis. 2008;46(5):686–8.

    Article  PubMed  Google Scholar 

  18. Barnes SL, et al. Preventing the transmission of multidrug-resistant organisms: modeling the relative importance of hand hygiene and environmental cleaning interventions. Infect Control Hosp Epidemiol. 2014;35(9):1156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ajao AO, et al. Risk of acquiring extended-spectrum beta-lactamase-producing Klebsiella species and Escherichia coli from prior room occupants in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34(5):453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bogan C, Marchaim D. The role of antimicrobial stewardship in curbing carbapenem resistance. Future Microbiol. 2013;8(8):979–91.

    Article  CAS  PubMed  Google Scholar 

  21. Yigit H, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munoz-Price LS, Quinn JP. Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2013;26(4):378–87.

    Article  PubMed  Google Scholar 

  23. Patients with KPC-producing Carbapenem-resistant Enterobacteriaceae (CRE) reported to the Centers for Disease Control and Prevention (CDC) as of January 2017, by state. https://www.cdc.gov/hai/organisms/cre/trackingcre.html, 2017.

  24. CDC, Facility Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE). https://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf, 2015.

  25. Weiner LM, et al. Vital signs: preventing antibiotic-resistant infections in hospitals – United States, 2014. Am J Transplant. 2016;16(7):2224–30.

    Article  CAS  PubMed  Google Scholar 

  26. Antimicrobial resistance interactive database (EARS-Net). http://atlas.ecdc.europa.eu/public/index.aspx?Instance=GeneralAtlas, 2014.

  27. Hussein K, et al. Carbapenem resistance among Klebsiella pneumoniae isolates: risk factors, molecular characteristics, and susceptibility patterns. Infect Control Hosp Epidemiol. 2009;30(7):666–71.

    Article  PubMed  Google Scholar 

  28. Marchaim D, et al. The burden of multidrug-resistant organisms on tertiary hospitals posed by patients with recent stays in long-term acute care facilities. Am J Infect Control. 2012;40(8):760–5.

    Article  PubMed  Google Scholar 

  29. Otter JA. What’s trending in the infection prevention and control literature? From HIS 2012 to HIS 2014, and beyond. J Hosp Infect. 2015;89(4):229–36.

    Article  CAS  PubMed  Google Scholar 

  30. Lin MY, et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57(9):1246–52.

    Article  CAS  PubMed  Google Scholar 

  31. Perez F, Van Duin D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. 2013;80(4):225–33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Munoz-Price LS, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Perez F, et al. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin Pharmacother. 2016;17(6):761–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. EUCAST. European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints. 2010; Available from: ≤http://www.srga.org/eucastwt/MICTAB/index.html>.

  35. CLSI. Performance standards for antimibrobial susceptibility testing. Twenty-sixth informational supplement. Approved standard M100-S20. Wayne: Clinical and Laboratory Standards Institute; 2010.

    Google Scholar 

  36. Adler A, et al. A swordless knight: epidemiology and molecular characteristics of the blaKPC-negative sequence type 258 Klebsiella pneumoniae clone. J Clin Microbiol. 2012;50(10):3180–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tamma PD, et al. Comparing the outcomes of patients with Carbapenemase-producing and non-Carbapenemase-producing Carbapenem-resistant Enterobacteriaceae bacteremia. Clin Infect Dis. 2017;64(3):257–64.

    Article  PubMed  Google Scholar 

  38. Miller S, Humphries RM. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae. Expert Rev Anti-Infect Ther. 2016;14(8):705–17.

    Article  CAS  PubMed  Google Scholar 

  39. Richter SS, Marchaim D. Screening for carbapenem-resistant Enterobacteriaceae: who, when, and how? Virulence. 2016; 8(4): 417–426.

    Google Scholar 

  40. Magiorakos AP, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.

    Article  CAS  PubMed  Google Scholar 

  41. Marchaim D, et al. Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol. 2012;33(8):817–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Monaco M, et al. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill. 2014;19(42):14–18.

    Google Scholar 

  43. McGann P, et al. Escherichia coli Harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016;60(7):4420–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maragakis LL. Recognition and prevention of multidrug-resistant Gram-negative bacteria in the intensive care unit. Crit Care Med. 2010;38(8 Suppl):S345–51.

    Article  CAS  PubMed  Google Scholar 

  45. Erasmus V, et al. Systematic review of studies on compliance with hand hygiene guidelines in hospital care. Infect Control Hosp Epidemiol. 2010;31(3):283–94.

    Article  PubMed  Google Scholar 

  46. Sypsa V, et al. Transmission dynamics of carbapenemase-producing Klebsiella pneumoniae and anticipated impact of infection control strategies in a surgical unit. PLoS One. 2012;7(7):e41068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siegel JD, et al. 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control. 2007;35(10 Suppl 2):S65–164.

    Article  PubMed  Google Scholar 

  48. Lledo W et al. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep. 2009;58(10):256–60.

    Google Scholar 

  49. Schwaber MJ, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 2011;52(7):848–55.

    Article  PubMed  Google Scholar 

  50. Kochar S, et al. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol. 2009;30(5):447–52.

    Article  PubMed  Google Scholar 

  51. Agodi A, et al. Containment of an outbreak of KPC-3-producing Klebsiella pneumoniae in Italy. J Clin Microbiol. 2011;49(11):3986–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zimmerman FS, et al. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am J Infect Control. 2013;41(3):190–4.

    Article  PubMed  Google Scholar 

  53. Poirel L, et al. Long-term carriage of NDM-1-producing Escherichia coli. J Antimicrob Chemother. 2011;66(9):2185–6.

    Article  CAS  PubMed  Google Scholar 

  54. Schechner V, et al. Predictors of rectal carriage of carbapenem-resistant Enterobacteriaceae (CRE) among patients with known CRE carriage at their next hospital encounter. Infect Control Hosp Epidemiol. 2011;32(5):497–503.

    Article  PubMed  Google Scholar 

  55. Bart Y, et al. Risk factors for recurrence of Carbapenem-resistant Enterobacteriaceae carriage: case-control study. Infect Control Hosp Epidemiol. 2015;36(8):936–41.

    Article  PubMed  Google Scholar 

  56. Schwaber MJ, Carmeli Y. An ongoing national intervention to contain the spread of carbapenem-resistant enterobacteriaceae. Clin Infect Dis. 2014;58(5):697–703.

    Article  PubMed  Google Scholar 

  57. Marchaim D, et al. Outbreak of colistin-resistant, carbapenem-resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob Agents Chemother. 2011;55(2):593–9.

    Article  CAS  PubMed  Google Scholar 

  58. Marchaim D, et al. “Swimming in resistance”: co-colonization with carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii or Pseudomonas aeruginosa. Am J Infect Control. 2012;40(9):830–5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dancer SJ. Hospital cleaning in the 21st century. Eur J Clin Microbiol Infect Dis. 2011;30(12):1473–81.

    Article  CAS  PubMed  Google Scholar 

  60. Lerner A, et al. Environmental contamination by carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2013;51(1):177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wilks SA, Michels H, Keevil CW. The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol. 2005;105(3):445–54.

    Article  CAS  PubMed  Google Scholar 

  63. Williams AP, et al. Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J Appl Microbiol. 2005;98(5):1075–83.

    Article  CAS  PubMed  Google Scholar 

  64. Weber DJ, Anderson D, Rutala WA. The role of the surface environment in healthcare-associated infections. Curr Opin Infect Dis. 2013;26(4):338–44.

    Article  PubMed  Google Scholar 

  65. Obee P, et al. An evaluation of different methods for the recovery of meticillin-resistant Staphylococcus aureus from environmental surfaces. J Hosp Infect. 2007;65(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  66. Wolf I, et al. The sink as a correctable source of extended-spectrum beta-lactamase contamination for patients in the intensive care unit. J Hosp Infect. 2014;87(2):126–30.

    Article  CAS  PubMed  Google Scholar 

  67. Ciobotaro P, et al. An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute care setting: from theory to practice. Am J Infect Control. 2011;39(8):671–7.

    Article  PubMed  Google Scholar 

  68. Munoz-Price LS, et al. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31(4):341–7.

    Article  PubMed  Google Scholar 

  69. Carling PC, Huang SS. Improving healthcare environmental cleaning and disinfection: current and evolving issues. Infect Control Hosp Epidemiol. 2013;34(5):507–13.

    Article  PubMed  Google Scholar 

  70. Weber DJ, Kanamori H, Rutala WA. ‘No touch’ technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016;29(4):424–31.

    Article  CAS  PubMed  Google Scholar 

  71. Anderson DJ, et al. Decontamination of targeted pathogens from patient rooms using an automated ultraviolet-C-emitting device. Infect Control Hosp Epidemiol. 2013;34(5):466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Boyce JM, et al. Monitoring the effectiveness of hospital cleaning practices by use of an adenosine triphosphate bioluminescence assay. Infect Control Hosp Epidemiol. 2009;30(7):678–84.

    Article  PubMed  Google Scholar 

  73. Chow A, et al. Alcohol handrubbing and chlorhexidine handwashing protocols for routine hospital practice: a randomized clinical trial of protocol efficacy and time effectiveness. Am J Infect Control. 2012;40(9):800–5.

    Article  PubMed  Google Scholar 

  74. Carling PC, et al. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010;38(4):1054–9.

    Article  PubMed  Google Scholar 

  75. Tschopp C, et al. Predictors of heavy stethoscope contamination following a physical examination. Infect Control Hosp Epidemiol. 2016;37(6):673–9.

    Article  PubMed  Google Scholar 

  76. Ha J, Son BK. Current issues in Duodenoscope-associated infections: now is the time to take action. Clin Endosc. 2015;48(5):361–3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rutala WA, Weber DJ. Outbreaks of carbapenem-resistant Enterobacteriaceae infections associated with duodenoscopes: what can we do to prevent infections? Am J Infect Control. 2016;44(5 Suppl):e47–51.

    Article  PubMed  Google Scholar 

  78. O’Horo JC, et al. Carbapenem-resistant Enterobacteriaceae and endoscopy: an evolving threat. Am J Infect Control. 2016;44:1032–6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rubin ZA, Murthy RK. Outbreaks associated with duodenoscopes: new challenges and controversies. Curr Opin Infect Dis. 2016;29(4):407–14.

    Article  PubMed  Google Scholar 

  80. Harris AD, et al. Co-carriage rates of vancomycin-resistant enterococcus and extended-spectrum beta-lactamase-producing bacteria among a cohort of intensive care unit patients: implications for an active surveillance program. Infect Control Hosp Epidemiol. 2004;25(2):105–8.

    Article  PubMed  Google Scholar 

  81. Temkin E, et al. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci. 2014;1323:22–42.

    Article  CAS  PubMed  Google Scholar 

  82. Bonten MJ. Colonization pressure: a critical parameter in the epidemiology of antibiotic-resistant bacteria. Crit Care. 2012;16(4):142.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dickstein Y, et al. Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: a retrospective matched cohort comparison with non-carriers. J Hosp Infect. 2016;94(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  84. Adler A, Friedman ND, Marchaim D. Multidrug-resistant gram-negative bacilli: infection control implications. Infect Dis Clin N Am. 2016;30(4):967–97.

    Article  Google Scholar 

  85. Leibman V, et al. Simple bedside score to optimize the time and the decision to initiate appropriate therapy for carbapenem-resistant Enterobacteriaceae. Ann Clin Microbiol Antimicrob. 2015;14:31.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Palmore TN, Henderson DK. Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches. Clin Infect Dis. 2013;57(11):1593–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Schwaber MJ, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA. 2008;300(24):2911–3.

    Article  CAS  PubMed  Google Scholar 

  88. Bhargava A, et al. Risk factors for colonization due to carbapenem-resistant Enterobacteriaceae among patients exposed to long-term acute care and acute care facilities. Infect Control Hosp Epidemiol. 2014;35(4):398–405.

    Article  PubMed  Google Scholar 

  89. Pugin J, et al. Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia. A randomized, placebo-controlled, double-blind clinical trial. JAMA. 1991;265(20):2704–10.

    Article  CAS  PubMed  Google Scholar 

  90. Bergmans DC, et al. Prevention of ventilator-associated pneumonia by oral decontamination: a prospective, randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med. 2001;164(3):382–8.

    Article  CAS  PubMed  Google Scholar 

  91. Saidel-Odes L, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.

    Article  PubMed  Google Scholar 

  92. Oren I, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infect Control. 2013;41(12):1167–72.

    Article  CAS  PubMed  Google Scholar 

  93. Lubbert C, et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents. 2013;42(6):565–70.

    Article  PubMed  CAS  Google Scholar 

  94. Septimus EJ, Schweizer ML. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev. 2016;29(2):201–22.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bilinski J, et al. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp. 2016;64(3):255–8.

    Article  Google Scholar 

  96. Barlam TF, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ghafur A, et al. “Save Antibiotics, Save lives”: an Indian success story of infection control through persuasive diplomacy. Antimicrob Resist Infect Control. 2012;1(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kritsotakis EI, et al. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-{beta}-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother. 2011;66(6):1383–91.

    Article  CAS  PubMed  Google Scholar 

  99. Borer A, et al. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K pneumoniae. Am J Infect Control. 2012;40(5):421–5.

    Article  PubMed  Google Scholar 

  100. Sader HS, et al. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents. 2014;43(4):328–34.

    Article  CAS  PubMed  Google Scholar 

  101. Hidron AI, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011.

    Article  PubMed  Google Scholar 

  102. Lautenbach E, et al. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect Control Hosp Epidemiol. 2010;31(1):47–53.

    Article  PubMed  Google Scholar 

  103. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mayhall CG. Hospital epidemiology and infection control. 4th ed. Lippincott Williams & Wilkins Philadelphia.

    Google Scholar 

  105. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–26.

    Article  CAS  PubMed  Google Scholar 

  106. Corona-Nakamura AL, et al. Epidemiologic study of Pseudomonas aeruginosa in critical patients and reservoirs. Arch Med Res. 2001;32(3):238–42.

    Article  CAS  PubMed  Google Scholar 

  107. Aloush V, et al. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Olson B, et al. Epidemiology of endemic Pseudomonas aeruginosa: why infection control efforts have failed. J Infect Dis. 1984;150(6):808–16.

    Article  CAS  PubMed  Google Scholar 

  109. DalBen MF, et al. Colonization pressure as a risk factor for colonization by multiresistant Acinetobacter spp and carbapenem-resistant Pseudomonas aeruginosa in an intensive care unit. Clinics (Sao Paulo). 2013;68(8):1128–33.

    Article  Google Scholar 

  110. Clifton IJ, Peckham DG. Defining routes of airborne transmission of Pseudomonas aeruginosa in people with cystic fibrosis. Expert Rev Respir Med. 2010;4(4):519–29.

    Article  PubMed  Google Scholar 

  111. Moolenaar RL, et al. A prolonged outbreak of Pseudomonas aeruginosa in a neonatal intensive care unit: did staff fingernails play a role in disease transmission? Infect Control Hosp Epidemiol. 2000;21(2):80–5.

    Article  CAS  PubMed  Google Scholar 

  112. Pires dos Santos R, et al. Hand hygiene, and not ertapenem use, contributed to reduction of carbapenem-resistant Pseudomonas aeruginosa rates. Infect Control Hosp Epidemiol. 2011;32(6):584–90.

    Article  PubMed  Google Scholar 

  113. Kirkland KB, Weinstein JM. Adverse effects of contact isolation. Lancet. 1999;354(9185):1177–8.

    Article  CAS  PubMed  Google Scholar 

  114. Stelfox HT, Bates DW, Redelmeier DA. Safety of patients isolated for infection control. JAMA. 2003;290(14):1899–905.

    Article  CAS  PubMed  Google Scholar 

  115. Muto CA, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol. 2003;24(5):362–86.

    Article  PubMed  Google Scholar 

  116. Levin PF. Improving compliance with universal precautions: effectiveness of interventions. AAOHN J. 1995;43(7):362–70.

    CAS  PubMed  Google Scholar 

  117. Lai KK, et al. Failure to eradicate vancomycin-resistant enterococci in a university hospital and the cost of barrier precautions. Infect Control Hosp Epidemiol. 1998;19(9):647–52.

    Article  CAS  PubMed  Google Scholar 

  118. Rosenberger LH, et al. Effective cohorting and “superisolation” in a single intensive care unit in response to an outbreak of diverse multi-drug-resistant organisms. Surg Infect. 2011;12(5):345–50.

    Article  Google Scholar 

  119. Kerr KG, Snelling AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 2009;73(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  120. Marchaim D, et al. Hospital bath basins are frequently contaminated with multidrug-resistant human pathogens. Am J Infect Control. 2012;40(6):562–4.

    Article  PubMed  Google Scholar 

  121. Bert F, et al. Multi-resistant Pseudomonas aeruginosa outbreak associated with contaminated tap water in a neurosurgery intensive care unit. J Hosp Infect. 1998;39(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  122. Hota S, et al. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol. 2009;30(1):25–33.

    Article  PubMed  Google Scholar 

  123. Bukholm G, et al. An outbreak of multidrug-resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Infect Control Hosp Epidemiol. 2002;23(8):441–6.

    Article  PubMed  Google Scholar 

  124. Petignat C, et al. Exogenous sources of pseudomonas aeruginosa in intensive care unit patients: implementation of infection control measures and follow-up with molecular typing. Infect Control Hosp Epidemiol. 2006;27(9):953–7.

    Article  PubMed  Google Scholar 

  125. Rogues AM, et al. Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit. J Hosp Infect. 2007;67(1):72–8.

    Article  PubMed  Google Scholar 

  126. Valles J, et al. Patterns of colonization by Pseudomonas aeruginosa in intubated patients: a 3-year prospective study of 1,607 isolates using pulsed-field gel electrophoresis with implications for prevention of ventilator-associated pneumonia. Intensive Care Med. 2004;30(9):1768–75.

    Article  PubMed  Google Scholar 

  127. Bertrand X, et al. Endemicity, molecular diversity and colonisation routes of Pseudomonas aeruginosa in intensive care units. Intensive Care Med. 2001;27(8):1263–8.

    Article  CAS  PubMed  Google Scholar 

  128. Gomez-Zorrilla S, et al. Prospective observational study of prior rectal colonization status as a predictor for subsequent development of Pseudomonas aeruginosa clinical infections. Antimicrob Agents Chemother. 2015;59(9):5213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cohen R, et al. A prospective survey of Pseudomonas aeruginosa colonization and infection in the intensive care unit. Antimicrob Resist Infect Control. 2017;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bonten MJ, et al. Characteristics of polyclonal endemicity of Pseudomonas aeruginosa colonization in intensive care units. Implications for infection control. Am J Respir Crit Care Med. 1999;160(4):1212–9.

    Article  CAS  PubMed  Google Scholar 

  131. Voor In’t Holt AF, et al. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(5):2626–37.

    Article  CAS  Google Scholar 

  132. Dortch MJ, et al. Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg Infect. 2011;12(1):15–25.

    Article  Google Scholar 

  133. Carmeli Y, et al. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother. 1999;43(6):1379–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pakyz AL, Oinonen M, Polk RE. Relationship of carbapenem restriction in 22 university teaching hospitals to carbapenem use and carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(5):1983–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tedeschi S, et al. An Antimicrobial Stewardship Program Based on Systematic Infectious Disease Consultation in a Rehabilitation Facility. Infect Control Hosp Epidemiol. 2017;38(1):76–82.

    Google Scholar 

  136. Carmeli Y, et al. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis. 2011;70(3):367–72.

    Article  CAS  PubMed  Google Scholar 

  137. Goldstein EJ, et al. Introduction of ertapenem into a hospital formulary: effect on antimicrobial usage and improved in vitro susceptibility of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(12):5122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nicolau DP, et al. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  139. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–81.

    Article  CAS  PubMed  Google Scholar 

  140. CDC’s antibiotic resistance patient safety atlas https://www.cdc.gov/hai/surveillance/ar-patient-safety-atlas.html, 2015.

  141. Reddy T, et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother. 2010;54(5):2235–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sengstock DM, et al. Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clin Infect Dis. 2010;50(12):1611–6.

    Article  CAS  PubMed  Google Scholar 

  143. de Medina T, Carmeli Y. The pivotal role of long-term care facilities in the epidemiology of Acinetobacter baumannii: another brick in the wall. Clin Infect Dis. 2010;50(12):1617–8.

    Article  PubMed  Google Scholar 

  144. Eveillard M, et al. Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int J Infect Dis. 2013;17(10):e802–5.

    Article  PubMed  Google Scholar 

  145. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43(Suppl 2):S49–56.

    Article  CAS  PubMed  Google Scholar 

  146. Agodi A, et al. Spread of a carbapenem- and colistin-resistant Acinetobacter baumannii ST2 clonal strain causing outbreaks in two Sicilian hospitals. J Hosp Infect. 2014;86(4):260–6.

    Article  CAS  PubMed  Google Scholar 

  147. Marchaim D, et al. Molecular and epidemiologic study of polyclonal outbreaks of multidrug-resistant Acinetobacter baumannii infection in an Israeli hospital. Infect Control Hosp Epidemiol. 2007;28(8):945–50.

    Article  PubMed  Google Scholar 

  148. Marchaim D, et al. Clinical and molecular epidemiology of Acinetobacter baumannii bloodstream infections in an endemic setting. Future Microbiol. 2017;12:271–83.

    Article  CAS  PubMed  Google Scholar 

  149. Morgan DJ, et al. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit Care Med. 2012;40(4):1045–51.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rodriguez-Bano J, et al. Long-term control of hospital-wide, endemic multidrug-resistant Acinetobacter baumannii through a comprehensive “bundle” approach. Am J Infect Control. 2009;37(9):715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cardoso CL, et al. Effectiveness of hand-cleansing agents for removing Acinetobacter baumannii strain from contaminated hands. Am J Infect Control. 1999;27(4):327–31.

    Article  CAS  PubMed  Google Scholar 

  152. Gbaguidi-Haore H, et al. Ecological study of the effectiveness of isolation precautions in the management of hospitalized patients colonized or infected with Acinetobacter baumannii. Infect Control Hosp Epidemiol. 2008;29(12):1118–23.

    Article  PubMed  Google Scholar 

  153. Rebmann T, Rosenbaum PA. Preventing the transmission of multidrug-resistant Acinetobacter baumannii: an executive summary of the Association for Professionals in infection control and epidemiology’s elimination guide. Am J Infect Control. 2011;39(5):439–41.

    Article  PubMed  Google Scholar 

  154. Peleg AY, et al. The success of acinetobacter species; genetic, metabolic and virulence attributes. PLoS One. 2012;7(10):e46984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Doi Y, et al. Extensively drug-resistant Acinetobacter baumannii. Emerg Infect Dis. 2009;15(6):980–2.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Doidge M, et al. Control of an outbreak of carbapenem-resistant Acinetobacter baumannii in Australia after introduction of environmental cleaning with a commercial oxidizing disinfectant. Infect Control Hosp Epidemiol. 2010;31(4):418–20.

    Article  PubMed  Google Scholar 

  158. Landman D, et al. Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration. J Antimicrob Chemother. 2012;67(6):1427–31.

    Article  CAS  PubMed  Google Scholar 

  159. Simor AE, et al. An outbreak due to multiresistant Acinetobacter baumannii in a burn unit: risk factors for acquisition and management. Infect Control Hosp Epidemiol. 2002;23(5):261–7.

    Article  PubMed  Google Scholar 

  160. Nseir S, et al. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect. 2011;17(8):1201–8.

    Article  CAS  PubMed  Google Scholar 

  161. Manian FA, et al. Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol. 2011;32(7):667–72.

    Article  PubMed  Google Scholar 

  162. Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control. 2016;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Maragakis LL, et al. Incidence and prevalence of multidrug-resistant acinetobacter using targeted active surveillance cultures. JAMA. 2008;299(21):2513–4.

    Article  CAS  PubMed  Google Scholar 

  164. Corbella X, et al. Relevance of digestive tract colonization in the epidemiology of nosocomial infections due to multiresistant Acinetobacter baumannii. Clin Infect Dis. 1996;23(2):329–34.

    Article  CAS  PubMed  Google Scholar 

  165. Ku K, et al. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am J Infect Control. 2012;40(10):983–7.

    Article  CAS  PubMed  Google Scholar 

  166. Marchaim D, et al. Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii. J Clin Microbiol. 2007;45(5):1551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Doi Y, et al. Screening for Acinetobacter baumannii colonization by use of sponges. J Clin Microbiol. 2011;49(1):154–8.

    Article  PubMed  Google Scholar 

  168. Coyle JR, et al. Effectiveness and cost of implementing an active surveillance screening policy for Acinetobacter baumannii: a Monte Carlo simulation model. Am J Infect Control. 2014;42(3):283–7.

    Article  PubMed  Google Scholar 

  169. Apisarnthanarak A, et al. A multifaceted intervention to reduce pandrug-resistant Acinetobacter baumannii colonization and infection in 3 intensive care units in a Thai tertiary care center: a 3-year study. Clin Infect Dis. 2008;47(6):760–7.

    Article  PubMed  Google Scholar 

  170. Qureshi ZA, et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis. 2015;60(9):1295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Abbo A, et al. Multidrug-resistant Acinetobacter baumannii. Emerg Infect Dis. 2005;11(1):22–9.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chopra T, et al. Risk factors and outcomes for patients with bloodstream infection due to Acinetobacter baumannii-calcoaceticus complex. Antimicrob Agents Chemother. 2014;58(8):4630–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Lee SO, et al. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case-control study. Antimicrob Agents Chemother. 2004;48(1):224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect. 2006;64(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  175. Jaggi N, Sissodia P, Sharma L. Control of multidrug resistant bacteria in a tertiary care hospital in India. Antimicrob Resist Infect Control. 2012;1(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sievert DM, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34(1):1–14.

    Article  PubMed  Google Scholar 

  177. Morrissey I, et al. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel). 2013;6(11):1335–46.

    Article  CAS  Google Scholar 

  178. Bertrand X, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther. 2012;34(1):124–37.

    Article  CAS  PubMed  Google Scholar 

  179. Bush K. Extended-spectrum beta-lactamases in North America, 1987–2006. Clin Microbiol Infect. 2008;14(Suppl 1):134–43.

    Article  CAS  PubMed  Google Scholar 

  180. Ofer-Friedman H, et al. Carbapenems versus piperacillin-Tazobactam for bloodstream infections of Nonurinary source caused by extended-Spectrum Beta-lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015;36(8):981–5.

    Article  PubMed  Google Scholar 

  181. Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med. 2005;352(4):380–91.

    Article  CAS  PubMed  Google Scholar 

  182. Ben-Ami R, et al. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin Infect Dis. 2006;42(7):925–34.

    Article  CAS  PubMed  Google Scholar 

  183. Hayakawa K, et al. Epidemiology and risk factors for isolation of Escherichia coli producing CTX-M-type extended-spectrum beta-lactamase in a large U.S. Medical Center. Antimicrob Agents Chemother. 2013;57(8):4010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ben-Ami R, et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis. 2009;49(5):682–90.

    Article  PubMed  Google Scholar 

  185. Bonkat G, et al. Increasing prevalence of ciprofloxacin resistance in extended-spectrum-beta-lactamase-producing Escherichia coli urinary isolates. World J Urol. 2013;31(6):1427–32.

    Article  CAS  PubMed  Google Scholar 

  186. Tukenmez Tigen E, et al. Outcomes of fecal carriage of extended-spectrum beta-lactamase after transrectal ultrasound-guided biopsy of the prostate. Urology. 2014;84(5):1008–15.

    Article  PubMed  Google Scholar 

  187. Guo Y, et al. Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One. 2016;11(4):e0153561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Nakane K, et al. Long-term colonization by bla(CTX-M)-harboring Escherichia coli in healthy Japanese people engaged in food handling. Appl Environ Microbiol. 2016;82(6):1818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. King LA, et al. Outbreak of Shiga toxin-producing Escherichia coli O104:H4 associated with organic fenugreek sprouts, France, June 2011. Clin Infect Dis. 2012;54(11):1588–94.

    Article  CAS  PubMed  Google Scholar 

  190. Karanika S, et al. Fecal colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: a systematic review and metaanalysis. Clin Infect Dis. 2016;63:310–8.

    Article  PubMed  Google Scholar 

  191. Tschudin-Sutter S, et al. Rate of transmission of extended-spectrum beta-lactamase-producing enterobacteriaceae without contact isolation. Clin Infect Dis. 2012;55(11):1505–11.

    Article  PubMed  Google Scholar 

  192. Alves M, et al. Extended-spectrum beta-lactamase – producing enterobacteriaceae in the intensive care unit: acquisition does not mean cross-transmission. BMC Infect Dis. 2016;16:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Hilty M, et al. Transmission dynamics of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis. 2012;55(7):967–75.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Freeman JT, et al. Predictors of hospital surface contamination with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: patient and organism factors. Antimicrob Resist Infect Control. 2014;3(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pittet D, et al. Bacterial contamination of the hands of hospital staff during routine patient care. Arch Intern Med. 1999;159(8):821–6.

    Article  CAS  PubMed  Google Scholar 

  196. Guenthner SH, Hendley JO, Wenzel RP. Gram-negative bacilli as nontransient flora on the hands of hospital personnel. J Clin Microbiol. 1987;25(3):488–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Weintrob AC, et al. Natural history of colonization with gram-negative multidrug-resistant organisms among hospitalized patients. Infect Control Hosp Epidemiol. 2010;31(4):330–7.

    Article  PubMed  Google Scholar 

  198. Pelat C, et al. Hand hygiene, cohorting, or antibiotic restriction to control outbreaks of multidrug-resistant Enterobacteriaceae. Infect Control Hosp Epidemiol. 2016;37(3):272–80.

    Article  PubMed  Google Scholar 

  199. Dhar S, et al. Contact precautions: more is not necessarily better. Infect Control Hosp Epidemiol. 2014;35(3):213–21.

    Article  PubMed  Google Scholar 

  200. Zahar JR, et al. About the usefulness of contact precautions for carriers of extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect Dis. 2015;15:512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Tietz A, Francioli P, Widmer AF. Extended -spectrum beta-lactamase (ESBL): spitalhygienische Implikationen. Swiss Noso. 2004;11:29–32.

    Google Scholar 

  202. Reddy P, et al. Screening for extended-spectrum beta-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis. 2007;45(7):846–52.

    Article  CAS  PubMed  Google Scholar 

  203. Cornejo-Juarez P, et al. Fecal ESBL Escherichia coli carriage as a risk factor for bacteremia in patients with hematological malignancies. Support Care Cancer. 2016;24(1):253–9.

    Article  PubMed  Google Scholar 

  204. Gardam MA, et al. Is surveillance for multidrug-resistant enterobacteriaceae an effective infection control strategy in the absence of an outbreak? J Infect Dis. 2002;186(12):1754–60.

    Article  PubMed  Google Scholar 

  205. Kennedy K, Collignon P. Colonisation with Escherichia coli resistant to “critically important” antibiotics: a high risk for international travellers. Eur J Clin Microbiol Infect Dis. 2010;29(12):1501–6.

    Article  CAS  PubMed  Google Scholar 

  206. Birgand G, et al. Duration of colonization by extended-spectrum beta-lactamase-producing Enterobacteriaceae after hospital discharge. Am J Infect Control. 2013;41(5):443–7.

    Article  PubMed  Google Scholar 

  207. Titelman E, et al. Faecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae is common 12 months after infection and is related to strain factors. Clin Microbiol Infect. 2014;20(8):O508–15.

    Article  CAS  PubMed  Google Scholar 

  208. Huttner B, et al. Decolonization of intestinal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial. J Antimicrob Chemother. 2013;68(10):2375–82.

    Article  CAS  PubMed  Google Scholar 

  209. Rieg S, et al. Intestinal decolonization of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBL): a retrospective observational study in patients at risk for infection and a brief review of the literature. BMC Infect Dis. 2015;15:475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Ntagiopoulos PG, et al. Impact of an antibiotic restriction policy on the antibiotic resistance patterns of Gram-negative microorganisms in an intensive care unit in Greece. Int J Antimicrob Agents. 2007;30(4):360–5.

    Article  CAS  PubMed  Google Scholar 

  211. Knudsen JD, Andersen SE. A multidisciplinary intervention to reduce infections of ESBL- and AmpC-producing, gram-negative bacteria at a university hospital. PLoS One. 2014;9(1):e86457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Marchaim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Henig, O., Katz, D.E., Marchaim, D. (2018). Multidrug-Resistant Gram-Negative Bacilli: Infection Prevention Considerations. In: Bearman, G., Munoz-Price, S., Morgan, D., Murthy, R. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-60980-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60980-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60978-2

  • Online ISBN: 978-3-319-60980-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics