Advertisement

Priming Designers Leads to Prime Designs

  • Jinjuan She
  • Carolyn Conner Seepersad
  • Katja Holtta-Otto
  • Erin F. MacDonald
Chapter
Part of the Understanding Innovation book series (UNDINNO)

Abstract

Priming has been used by behavioral psychologists to discover many interesting findings regarding human judgments and decisions. This paper offers two studies and a literature review that highlight how designers use priming to fine-tune their skills. In the past, designers have used priming exercises to help them generate more features, novel features, and uncover latent customer needs during conceptualization. This paper presents two newer design methods that actively prime designers to exhibit or accentuate certain skills during the conceptual design process. They both use primes that require active participation from the subject and sensory/perceptual engagement. Study 1 uses priming to improve designers’ product-based communication abilities. Both a low-immersion implicit prime and a high-immersion implicit prime help designers generate more concepts. Additionally, the high-immersion prime leads to better communication of sustainability through the design. Study 2 fosters user-centered originality in design with an explicit priming technique of empathic lead users. This study finds that subjects in the high-immersion priming condition generate design concepts with higher levels of originality and more innovative features targeting product-user interactions, without loss in feasibility. Taken together with findings from other researchers, we conclude that both implicit and explicit priming are promising techniques that can be used to enhance design skills.

Keywords

Priming Sensory triggers Communication of sustainability Product-user interaction Conceptual design 

References

  1. Ackerman, J., Nocera, C., & Bargh, J. (2010). Incidental haptic sensations influence social judgments and decisions. Science, 328, 1712–1715. doi: 10.1126/science.1189993.CrossRefGoogle Scholar
  2. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. doi: 10.1016/j.jml.2007.12.005.CrossRefGoogle Scholar
  3. Bargh, J. A., & Chartrand, T. L. (2000). The mind in the middle: A practical guide to priming and automaticity research. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 253–285). New York: Cambridge University Press.Google Scholar
  4. Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology, 71(2), 230–244. doi: 10.1037/0022-3514.71.2.230.CrossRefGoogle Scholar
  5. Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A. Y., Barndollar, K., & Trötschel, R. (2001). The automated will: Nonconscious activation and pursuit of behavioral goals. Journal of Personality and Social Psychology, 81(6), 1014–1027. doi: 10.1037/0022-3514.81.6.1014.CrossRefGoogle Scholar
  6. Brannan, D., Heeter, J., & Bird, L. (2012). Made with renewable energy: How and why companies are labeling consumer products: National Renewable Energy Lab, p. 37.Google Scholar
  7. Bruner, J. S. (1957). On perceptual readiness. Psychological Review, 64(2), 123–152. doi: 10.1037/h0043805. CrossRefGoogle Scholar
  8. Cagan, J., & Vogel, C. M. (2002). Creating breakthrough products: Innovation from product planning to program approval. Upper Saddle River, NJ: FT Press.Google Scholar
  9. Cagan, J., & Vogel, C. M. (2013). Creating breakthrough products: Revealing the secrets that drive global innovation (2nd ed.). Upper Saddle River, NJ: FT Press.Google Scholar
  10. Cameron, C. D., Brown-Iannuzzi, J. L., & Payne, B. K. (2012). Sequential priming measures of implicit social cognition: A meta-analysis of associations with behavior and explicit attitudes. Personality and Social Psychology, 16(4), 330–350. doi: 10.1177/1088868312440047.CrossRefGoogle Scholar
  11. Charyton, C., Jagacinski, R. J., & Merrill, J. A. (2008). CEDA: A research instrument for creative engineering design assessment. Psychology of Aesthetics, Creativity, and the Arts, 2, 147–154. doi: 10.1037/1931-3896.2.3.147.CrossRefGoogle Scholar
  12. Chrysikou, E. G., & Weisberg, R. W. (2005). Following the wrong footsteps: Fixation effects of pictorial examples in a design problem-solving task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 1134–1148. doi: 10.1037/0278-7393.31.5.1134. Google Scholar
  13. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. doi: 10.1177/001316446002000104.CrossRefGoogle Scholar
  14. Cohen, J. (1968). Weighted Kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70, 213–220. doi: 10.1037/H0026256.CrossRefGoogle Scholar
  15. Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329(5987), 47–50. doi: 10.1126/science.1188595.CrossRefGoogle Scholar
  16. Daly, S. R., Christian, J. L., Yilmaz, S., Seifert, C. M., & Gonzalez, R. (2012). Assessing design heuristics in idea generation within an introductory engineering design course. International Journal of Engineering Education, 28(2), 463–473. doi: 0949-149X/91.Google Scholar
  17. Eden, H., Scharff, E., & Hornecker, E. (2002). Multilevel design and role play: Experiences in assessing support for neighborhood participation in design. Paper presented at the Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, London, England.Google Scholar
  18. Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. NeuroImage, 52(4), 1687–1695. doi: 10.1016/j.neuroimage.2010.05.072.CrossRefGoogle Scholar
  19. Ford Motor Company. (2007). Ford drives a mile in an older person’s suit. Retrieved November 17, 2015, from http://www.ncsu.edu/ncsu/design/cud/projserv_ps/projects/case_studies/ford.htm
  20. Friedman, R. S., Fishbach, A., Forster, J., & Werth, L. (2003). Attentional priming effects on creativity. Creativity Research Journal, 15(2–3), 277–286. doi: 10.1207/S15326934CRJ152&3_18. CrossRefGoogle Scholar
  21. Galinsky, A. D., & Moskowitz, G. B. (2000). Counterfactuals as behavioral primes: Priming the simulation heuristic and consideration of alternatives. Journal of Experimental Social Psychology, 36(4), 384–409. doi: 10.1006/jesp.1999.1409.CrossRefGoogle Scholar
  22. Gerber, L. (2008). Developing an idea by throwing it away. Ambidextrous, 9. Retrieved from http://ambidextrousmag.org/issues/09/article.php?i9p41_43
  23. Guyton, A. A. (2006). Developing sustainable product semantics for consumer products—A sustainable designer’s guide. Master, Georgia Institute of Technology, Atlanta, GA.Google Scholar
  24. Hannukainen, P. & Holtta-Otto, K. (2006). Identifying customer needs—Disabled persons as lead users. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, PA.Google Scholar
  25. Haubl, G., & Murray, K. B. (2003). Preference construction and persistence in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer Psychology, 13(1-2), 75–91. doi: 10.1207/S15327663JCP13-1&2_07. CrossRefGoogle Scholar
  26. Helminen, P., Hamalainen, M. M., & Makinen, S. (2010). Redefining user perception: A method for fully capturing the user perspective of a product concept. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Montreal, Quebec, Canada.Google Scholar
  27. Higgins, J. (2005). 101 Creative problem solving techniques: The handbook of new ideas for business. Winter Park, FL: New Management Publishing Company.Google Scholar
  28. Jansson, D. G., & Smith, S. M. (1991). Design fixation. Design Studies, 12(1), 3–11. doi: 10.1016/0142-694X(91)90003-F.CrossRefGoogle Scholar
  29. Johnson, D. G., Genco, N., Saunders, M. N., Williams, P., Seepersad, C. C., & Holtta-Otto, K. (2014). An experimental investigation of the effectiveness of empathic experience design for innovative concept generation. Journal of Mechanical Design, 136(5), 051009. doi: 10.1115/1.4026951.CrossRefGoogle Scholar
  30. Kahneman, D., & Tversky, A. (1974). Judgment under uncertainty: Heuristics and biases. Science, New Series, 185(4157), 1124–1131. doi: 10.1126/science.185.4157.1124. Google Scholar
  31. Kay, A. C., Wheeler, S. C., Bargh, J. A., & Ross, L. (2004). Material priming: The influence of mundane physical objects on situational construal and competitive behavioral choice. Organizational Behavior and Human Decision Processes, 95(1), 83–96. doi: 10.1016/j.obhdp.2004.06.003.CrossRefGoogle Scholar
  32. Kelley, T. (2001). The art of innovation. New York: Doubleday.Google Scholar
  33. Kohn, N. W., & Smith, S. M. (2011). Collaborative fixation: Effects of others’ ideas on brainstorming. Applied Cognitive Psychology, 25, 359–371. doi: 10.1002/acp.1699.CrossRefGoogle Scholar
  34. Leonard, D., & Rayport, J. F. (1997). Spark innovation through empathic design. Harvard Business Review, 75(6), 102–113. doi: 10.1225/97606.Google Scholar
  35. Lewis, S., Dontcheva, M., & Gerber, E. (2011). Affective computational priming and creativity. Paper presented at the CHI: International Conference on Human Factors in Computing Systems, Vancouver, BC, Canada.Google Scholar
  36. Lin, J., & Seepersad, C. C. (2007). Empathic lead users: The effects of extraordinary user experiences on customer needs analysis and product redesign. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV.Google Scholar
  37. Linsey, J. S. (2007). Design-by-analogy and representation in innovative engineering concept generation. Ph.D. Dissertation, The University of Texas at Austin, Austin, TX.Google Scholar
  38. Linsey, J. S., Green, M. G., Murphy, J. T., Wood, K. L., & Markman, A. B. (2005). “Collaborating to success”: An experimental study of group idea generation techniques. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA.Google Scholar
  39. Linsey, J. S., Tseng, I., Fu, K., Cagan, J., Wood, K. L., & Schunn, C. (2010). A study of design fixation, its mitigation and perception in engineering design faculty. Journal of Mechanical Design, 132(4), 041003. doi: 10.1115/1.4001110.CrossRefGoogle Scholar
  40. Linsey, J. S., Wood, K. L., & Markman, A. B. (2008). Increasing innovation: Presentation and evaluation of the wordtree design-by-analogy method. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, NY.Google Scholar
  41. Mandel, N., & Johnson, E. J. (2002). When web pages influence choice: Effects of visual primes on experts and novices. Journal of Consumer Research, 29(2), 235–245. doi: 10.1086/341573.CrossRefGoogle Scholar
  42. Marsh, R. L., Bink, M. L., & Hicks, J. L. (1999). Conceptual priming in a generative problem-solving task. Memory & Cognition, 27(2), 355–363. doi: 10.3758/BF03211419.CrossRefGoogle Scholar
  43. Mullen, B., Johnson, C., & Salas, E. (1991). Productivity loss in brainstorming groups: A meta-analytic integration. Basic and Applied Social Psychology, 12(1), 3–23. doi: 10.1207/s15324834basp1201_1.CrossRefGoogle Scholar
  44. Nedungadi, P. (1990). Recall and consumer consideration sets: Influencing choice without altering brand evaluations. Journal of Consumer Research, 17(3), 263–276. doi: 10.1086/208556.CrossRefGoogle Scholar
  45. Nijstad, B. A., Stroebe, W., & Lodewijk, H. F. M. (2002). Cognitive stimulation and interference in groups: Exposure effects in an idea generation task. Journal of Experimental Social Psychology, 38, 535–544. doi: 10.1016/S0022-1031(02)00500-0.CrossRefGoogle Scholar
  46. Norman, D. (1998). The design of everyday things. New York: Doubleday.Google Scholar
  47. Norman, D. (2004). Emotional design: Why we love (or hate) everyday things. New York: Basic Books.Google Scholar
  48. Norman, D. (2013). Design of everyday things revised and expanded edition. New York: Basic Books.Google Scholar
  49. Osborn, A. F. (1956). Applied imagination: principles and procedures of creative thinking. New York, NY: Scribner.Google Scholar
  50. Otto, K., & Wood, K. (2000). Product design: Techniques in reverse engineering and new product development. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  51. Perttula, M., & Sipila, P. (2007). The idea exposure paradigm in design idea generation. Journal of Engineering Design, 18(1), 93–102. doi: 10.1080/09544820600679679.CrossRefGoogle Scholar
  52. Preiser, W., & Ostroff, E. (2001). Universal design handbook. New York: McGraw-Hill Professional.Google Scholar
  53. Purcell, A. T., & Gero, J. S. (1996). Design and other types of fixation. Design Studies, 17, 363–383. doi: 10.1016/S0142-694X(96)00023-3.CrossRefGoogle Scholar
  54. Purcell, A. T., Williams, P., & Gero, J. S. (1993). Fixation effects: Do they exist in design problem solving. Environment and Planning B: Planning and Design, 20, 333–345. doi: 10.1068/b200333.CrossRefGoogle Scholar
  55. Raviselvam, S., Noonan, M., & Hölttä-Otto, K. (2014). Using elderly as lead users for universal engineering design. In International Conference on Universal Design (UD2014), Lund, Sweden.Google Scholar
  56. Rickards, T. (1974). Problem solving through creative analysis. Essex: Gower Technical Press.Google Scholar
  57. Rietzschel, E., Nijstad, B., & Stroebe, W. (2007). Relative accessibility of domain knowledge and creativity: The effects of knowledge activiation on he quantity and originality of generated ideas. Journal of Experimental Social Psychology, 43(6), 933–946. doi: 10.1016/j.jesp.2006.10.014.
  58. Sassenberg, K., & Moskowitz, G. B. (2005). Don’t stereotype, think different! Overcoming automatic stereotype activation by mindset priming. Journal of Experimental Social Psychology, 41(5), 506–514. doi: 10.1016/j.jesp.2004.10.002.CrossRefGoogle Scholar
  59. Saunders, M. N., Seepersad, C. C., & Holtta-Otto, K. (2011). The characteristics of innovative mechanical products. Journal of Mechanical Design, 133(2), 021009. doi: 10.1115/1.4003409.CrossRefGoogle Scholar
  60. Shah, J. J., Vargas-Hernandez, N., & Smith, S. M. (2003). Metrics for measuring ideation effectiveness. Design Studies, 24, 111–134. doi: 10.1016/S0142-694X(02)00034-0.CrossRefGoogle Scholar
  61. She, J. (2013). Designing features that influence decisions on sustainable products. Ph.D. Thesis. Iowa State Uniersity, Ames, IA.Google Scholar
  62. She, J., & MacDonald, E. (2014). Priming designers to communicate sustainability. Journal of Mechanical Design, 136(1), 011001. doi: 10.1115/1.4025488. CrossRefGoogle Scholar
  63. Singer, N. (2011, February 6). A graying population spells business opportunity. The New York Times, pp. BU1.Google Scholar
  64. Srivathsavai, R., Genco, N., Holtta-Otto, K., & Seepersad, C. C. (2010). Study of existing metrics used in measurement of ideation effectiveness. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec.Google Scholar
  65. Story, M., Mueller, J., & Mace, R. (1998). The universal design file: Designing for people of all ages & abilities. Raleigh, NC: The Center for Universal Design, NC State University.Google Scholar
  66. Suwa, M., & Tversky, B. (1997). What do architects and students perceive in their design sketches? A protocol analysis. Design Studies, 18(4), 385–403. doi: 10.1016/S0142-694X(97)00008-2.CrossRefGoogle Scholar
  67. Thomas, J., & McDonagh, D. (2013). Empathic design: Research strategies. Australasian Medical Journal, 6(1), 1–6. doi: 10.4066/AMJ.2013.1575.CrossRefGoogle Scholar
  68. Ulrich, K., & Eppinger, S. (2004). Product design and development. New York: McGraw-Hill/Irwin.Google Scholar
  69. Urban, G. L., & Von Hippel, E. (1988). Lead user analyses for the development of new industrial products. Management Science, 34(5), 569–582. doi: 10.1287/mnsc.34.5.569.CrossRefGoogle Scholar
  70. Valacich, J. S., Jung, J. H., & Looney, C. A. (2006). The effects of individual cognitive ability and idea stimulation on idea-generation performance. Group Dynamics: Theory, Research, and Practice, 10(1), 1–15. doi: 10.1037/1089-2699.10.1.1.CrossRefGoogle Scholar
  71. Von Hippel, E. (1986). Lead users: A source of novel product concepts. Management Science, 32(7), 791–805. doi: 10.1287/mnsc.32.7.791.CrossRefGoogle Scholar
  72. Von Hippel, E. (2005). Democratizing innovation. Cambridge, MA: MIT Press.Google Scholar
  73. Wheeler, S. C., & DeMarree, K. G. (2009). Multiple mechanisms of prime-to-behavior effects. Social and Personality Psychology Compass, 3(4), 566–581. doi: 10.1111/j.1751-9004.2009.00187.x.CrossRefGoogle Scholar
  74. Yang, M. (2009). Observations on concept generation and sketching in engineering design. Research in Engineering Design, 20(1), 1–11. doi: 10.1007/s00163-008-0055-0.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jinjuan She
    • 1
  • Carolyn Conner Seepersad
    • 2
  • Katja Holtta-Otto
    • 3
  • Erin F. MacDonald
    • 4
  1. 1.MathWorksNatickUSA
  2. 2.Department of Mechanical EngineeringThe University of Texas at AustinAustinUSA
  3. 3.Department of Mechanical EngineeringAalto UniversityAaltoFinland
  4. 4.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations