Skip to main content

Improved Reference Tracts for Unsupervised Brain White Matter Tractography

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Neighbourhood tractography aims to automatically segment equivalent brain white matter tracts from diffusion magnetic resonance imaging (dMRI) data in different subjects by using a “reference tract” as a prior for the shape and length of each tract of interest. In the current work we present a means of improving the technique by using references tracts derived from dMRI data acquired from 80 healthy volunteers aged 25–64 years. The reference tracts were tested on the segmentation of 16 major white matter tracts in 50 healthy older people, aged 71.8 (±0.4) years. We found that data-generated reference tracts improved the automatic white matter tract segmentations compared to results from atlas-generated reference tracts. We also obtained higher percentages of visually acceptable segmented tracts and lower variation in water diffusion parameters using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tournier, J.D., Mori, S., Leemans, A.: Diffusion tensor imaging and beyond. Magn. Reson. Med. 65, 1532–1556 (2011). doi:10.1002/mrm.22924

    Article  Google Scholar 

  2. Clayden, J.D., Storkey, A.J., Muñoz Maniega, S., Bastin, M.E.: Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach. Neuroimage 45, 377–385 (2009). doi:10.1016/j.neuroimage.2008.12.010

    Article  Google Scholar 

  3. Clayden, J.D., Storkey, A.J., Bastin, M.E.: A probabilistic model-based approach to consistent white matter tract segmentation. IEEE Trans. Med. Imaging 26, 1555–1561 (2007). doi:10.1109/TMI.2007.905826

    Article  Google Scholar 

  4. Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R., Salat, D., Ehrlich, S., Behrens, T., Jbabdi, S., Gollub, R., Fischl, B.: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front. Neuroinform. 5, 23 (2011). doi:10.3389/fninf.2011.00023

    Article  Google Scholar 

  5. Muñoz Maniega, S., Bastin, M.E., McIntosh, A.M., Lawrie, S.M., Clayden, J.D.: Atlas-based reference tracts improve automatic white matter segmentation with neighbourhood tractography. In: ISMRM (ed.) Proceedings of ISMRM 16th Scientific Meeting and Exhibition, p. 3318 (2008)

    Google Scholar 

  6. Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., Calabresi, P.A., Pekar, J.J., van Zijl, P.C., Mori, S.: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39, 336–347 (2008). doi:10.1016/j.neuroimage.2007.07.053

    Article  Google Scholar 

  7. Penke, L., Muñoz Maniega, S., Houlihan, L.M., Murray, C., Gow, A.J., Clayden, J.D., Bastin, M.E., Wardlaw, J.M., Deary, I.J.: White matter integrity in the splenium of the corpus callosum is related to successful cognitive aging and partly mediates the protective effect of an ancestral polymorphism in ADRB2. Behav. Genet. 40, 146–156 (2010). doi:10.1007/s10519-009-9318-4

    Article  Google Scholar 

  8. Dickie, D.A., Mikhael, S., Job, D.E., Wardlaw, J.M., Laidlaw, D.H., Bastin, M.E.: Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI. Magn. Reson. Imaging 33, 1299–1305 (2015). doi:10.1016/j.mri.2015.07.014

    Article  Google Scholar 

  9. Deary, I.J., Gow, A.J., Taylor, M.D., Corley, J., Brett, C., Wilson, V., Campbell, H., Whalley, L.J., Visscher, P.M., Porteous, D.J., Starr, J.M.: The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr. 7, 28 (2007). doi:10.1186/1471-2318-7-28

    Article  Google Scholar 

  10. Jones, D.K., Williams, S.C.R., Gasston, D., Horsfield, M.A., Simmons, A., Howard, R.: Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum. Brain Mapp. 15, 216–230 (2002). doi:10.1002/hbm.10018

    Article  Google Scholar 

  11. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002). doi:10.1002/hbm.10062

    Article  Google Scholar 

  12. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001). doi:10.1016/S1361-8415(01)00036-6

    Article  Google Scholar 

  13. Clayden, J.D., Muñoz Maniega, S., Storkey, A.J., King, M.D., Bastin, M.E., Clark, C.A.: TractoR: magnetic resonance imaging and tractography with R. J. Stat. Softw. 44, 1–18 (2011). doi:10.18637/jss.v044.i08

    Article  Google Scholar 

  14. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007). doi:10.1016/j.neuroimage.2006.09.018

    Article  Google Scholar 

  15. Clayden, J.D., King, M.D., Clark, C.A.: Shape modelling for tract selection. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 150–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04271-3_19

    Google Scholar 

  16. Hill, C.S., Clayden, J.D., Kitchen, N., Bull, J., Harkness, W., Clark, C.A.: A feasibility study of neighbourhood tractography in the presence of paediatric brain tumours. In: Proceedings of Autumn Meeting of the Society of British Neurological Surgeons (2009)

    Google Scholar 

Download references

Acknowledgements

LBC1936 was supported by the Age UK-funded Disconnected Mind project, with additional funding from the UK Medical Research Council (MR/M013111/1). MRI scanning for the training dataset was funded under NIH grant R01 EB004155-03. The scanning was performed at the Brain Research Imaging Centre, Edinburgh, part of Edinburgh Imaging (www.ed.ac.uk/clinical-sciences/edinburgh-imaging) and the SINAPSE Collaboration (Scottish Imaging Network, A Platform for Scientific Excellence, www.sinapse.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Muñoz Maniega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Muñoz Maniega, S., Bastin, M.E., Deary, I.J., Wardlaw, J.M., Clayden, J.D. (2017). Improved Reference Tracts for Unsupervised Brain White Matter Tractography. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics