Skip to main content

Fiber-Reinforced Composites

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

Fiber reinforced composite (FRC) is a promising class of materials that gives clinicians alternative treatment options. FRCs are acknowledged by their excellent mechanical properties, and their strength is superior to many restorative dental materials. This chapter presents basic material science background for the successful use of FRCs and provides state-of-the-art knowledge in the field of FRC materials in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vallittu PK. High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater. 2015;31:1–7.

    Article  PubMed  Google Scholar 

  2. Edwards KL. An overview of the technology of fiber-reinforced plastics for design purposes. Mater Des. 1998;19:1–10.

    Article  Google Scholar 

  3. Vallittu PK. Survival rates of resin-bonded, glass fiber-reinforced composite fixed partial dentures with a mean follow-up of 42-months: a pilot study. J Prosthet Dent. 2004;91:241–7.

    Article  PubMed  Google Scholar 

  4. Gohring TN, Roos M. Inlay-fixed partial dentures adhesively and reinforced by glass fiber: clinical and scanning electron microscopy analysis after five years. Eur J Oral Sci. 2005;113:60–9.

    Article  PubMed  Google Scholar 

  5. Spinas E, Aresu M, Canargiu F. Prosthetic rehabilitation interventions in adolescents with fixed bridges: a 5-year observational study. Eur J Paediatr Dent. 2013;14:59–62.

    Article  PubMed  Google Scholar 

  6. van Heumen CC, van Dijken JW, Tanner J, Pikaar R, Lassila LV, Creugers NH, Vallittu PK, Kreulen CM. Five-year survival of 3-unit fiber-reinforced composite fixed partial dentures in the anterior area. Dent Mater. 2009;25:820–7.

    Article  PubMed  Google Scholar 

  7. Vallittu PK. Some aspects of the tensile strength of unidirectional glass fiber-polymethyl methacrylate composite used in dentures. J Oral Rehabil. 1998;25:100–5.

    Article  PubMed  Google Scholar 

  8. Lastumäki TM, Lassila LV, Vallittu PK. The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties. J Mater Sci Mater Med. 2003;14:803–9.

    Article  PubMed  Google Scholar 

  9. Mullarky R. Aramid fiber reinforcement of acrylic appliances. J Clin Orthod. 1985;19:655–8.

    PubMed  Google Scholar 

  10. Murphy J. Reinforced plastics handbook. 2nd ed. Oxford: Elsevier Advanced Technology; 1998. p. 265.

    Google Scholar 

  11. Schreiber C. Polymethylmethacrylate reinforced with carbon fibers. Br Dent J. 1971;130:29–30.

    Article  PubMed  Google Scholar 

  12. Bowman AJ, Manley TR. The elimination of breakages in upper denture by reinforcement with carbon fiber. Br Dent J. 1984;156:87–9.

    Article  PubMed  Google Scholar 

  13. Lassila LV, Tanner J, Bell AM, Narva K, Vallittu PK. Flexural properties of fiber reinforced root canal posts. Dent Mater. 2004;20:29–36.

    Article  PubMed  Google Scholar 

  14. Vallittu PK. Ultra-high-modulus polyethylene ribbon as reinforcement for denture polymethyl methacrylate: a short communication. Dent Mater. 1997;13:381–2.

    Article  PubMed  Google Scholar 

  15. Gutteridge D. Reinforcement of poly (methyl methacrylate) with ultra- high- modulus polymethylene fibers. J Dent. 1992;20:50–4.

    Article  PubMed  Google Scholar 

  16. Tanner J, Carlén A, Söderling E, Vallittu PK. Adsorption of parotid saliva proteins and adhesion of Streptococcus Mutans ATCC 21752 to dental fiber-reinforced composites. J Biomed Mater Res B Appl Biomater. 2003;66:391–8.

    Article  PubMed  Google Scholar 

  17. Dyer SR, Lassila LV, Jokinen M, Vallittu PK. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent Mater. 2004;20:947–55.

    Article  PubMed  Google Scholar 

  18. Garoushi S, Vallittu PK, Lassila LV. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent Mater. 2007;23:1356–62.

    Article  PubMed  Google Scholar 

  19. Vallittu PK. Comparison of two different silane compounds used for improving adhesion between fibers and acrylic denture base material. J Oral Rehabil. 1993;20:533–9.

    Article  PubMed  Google Scholar 

  20. Vallittu PK. Curing of silane coupling agent and its effect on the transverse strength of autopolymerizing polymethylmethacrylate glass fiber composite. J Oral Rehabil. 1997;24:124–30.

    Article  PubMed  Google Scholar 

  21. Herakovich C. Mechanics of fibrous composites. New York: Wiley and Sons Publ. Co; 1998.

    Google Scholar 

  22. Goldberg AJ, Burstone CJ. The use of continuous fiber reinforcement in dentistry. Dent Mater. 1992;8:197–202.

    Article  PubMed  Google Scholar 

  23. Cocco AR, Rosa WL, Silva AF, Lund RG, Piva E. A systematic review about antibacterial monomers used in dental adhesive systems: current status and further prospects. Dent Mater. 2015;31:1345–62.

    Article  PubMed  Google Scholar 

  24. Tezvergil A, Lassila LV, Vallittu PK. The shear bond strength of bidirectional and random- oriented fiber-reinforced composite to tooth structure. J Dent. 2005;33:509–16.

    Article  PubMed  Google Scholar 

  25. Kallio TT, Lastumäki TM, Vallittu PK. Bonding of restorative and veneering composite resin to some polymeric composites. Dent Mater. 2001;17:80–6.

    Article  PubMed  Google Scholar 

  26. Keski-Nikkola MS, Lassila LV, Vallittu PK. An in vitro investigation of bond strength of veneering composite resin to glass fiber veil reinforced composite. Eur J Prosthodont Restor Dent. 2004;12:80–6.

    PubMed  Google Scholar 

  27. Rosentritt M, Behr M, Kolbeck C, Handel G. In vitro repair of three-unit fiber-reinforced composite FPDs. Int J Prosthodont. 2001;14:344–9.

    PubMed  Google Scholar 

  28. Narva KK, Vallittu PK, Helenius H, Yli-Urpo A. Clinical survey of acrylic resin removable denture repairs with glass-fiber reinforcement. Int J Prosthodont. 2001;14:219–24.

    PubMed  Google Scholar 

  29. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent. 2004;91:274–80.

    Article  PubMed  Google Scholar 

  30. Freilich M, Duncan J, Meiers J, Goldberg A. Preimpregnated fiber-reinforced prostheses. Part I. Basic rationale and complete-coverage and intracoronal fixed partial denture designs. Quintessence Int. 1998;29:689–96.

    PubMed  Google Scholar 

  31. Ahlstrand W, Finger W. Direct and indirect fiber-reinforced fixed partial dentures: case reports. Restor Dent. 2002;33:359–65.

    Google Scholar 

  32. Meiers J, Duncan J, Freilich M, Goldberg A. Preimpregnated fiber reinforced prosthesis. Part II. Direct applications: splint and fixed partial dentures. Quintessence Int. 1998;29:761–8.

    PubMed  Google Scholar 

  33. Garoushi S, Vallittu PK, Lassila LVJ. Use of isotropic short fiber reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures. J Dent. 2007;35:403–8.

    Article  PubMed  Google Scholar 

  34. Garoushi S, Lassila LVJ, Vallittu PK. Direct composite resin restoration of an anterior tooth: effect of fiber-reinforced composite substructure. Eur J Prosthodont Restor Dent. 2007;15:61–6.

    PubMed  Google Scholar 

  35. Bell AM, Lassila LV, Kangasniemi I, Vallittu PK. Bonding of fiber-reinforced composite post to root canal dentin. J Dent. 2005;33:533–9.

    Article  PubMed  Google Scholar 

  36. Hatta M, Shinya A, Vallittu PK, Shinya A, Lassila LV. High volume individual fiber post versus low volume fiber post: the fracture load of the restored tooth. J Prosthodont Res. 2011;55:146–53.

    Article  PubMed  Google Scholar 

  37. Fráter M, Forster A, Jantyik Á, Braunitzer G, Nagy K, Grandini S. In vitro fracture resistance of premolar teeth restored with fiber-reinforced composite posts using a single or a multi-post technique. Aust Endod J. 2017;43(1):16–22. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  38. Le Bell-Rönnlöf AM, Lassila LV, Kangasniemi I, Vallittu PK. Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts. Dent Mater. 2011;27:107–15.

    Article  Google Scholar 

  39. Vallittu PK. Are we misusing fiber posts? Guest editorial. Dent Mater. 2016;32:125–6.

    Article  PubMed  Google Scholar 

  40. Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent Mater. 2007;23:17–23.

    Article  PubMed  Google Scholar 

  41. Garoushi S, Vallittu PK, Lassila L. Fracture resistance of short, randomly oriented, glass fiber-reinforced composite premolar crowns. Acta Biomater. 2007;3:779–84.

    Article  PubMed  Google Scholar 

  42. Garoushi S, Vallittu PK, Lassila L. Direct restoration of severely damaged incisors using short fiber-reinforced composite resin. J Dent. 2007;35:731–6.

    Article  PubMed  Google Scholar 

  43. Garoushi SK, Hatem M, Lassila L, Vallittu PK. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomater Odontol Scand. 2015;1:6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Garoushi S, Lassila L, Tezvergil A, Vallittu PK. Load bearing capacity of fiber-reinforced and particulate filler composite resin combination. J Dent. 2006;34:179–84.

    Article  PubMed  Google Scholar 

  45. Rocca GT, Rizcalla M, Kjejci I. Fiber-reinforced resin coating for endocrown preparations: a technical report. Oper Dent. 2013;38:242–8.

    Article  PubMed  Google Scholar 

  46. Garoushi S, Shinya A, Shinya A, Vallittu PK. Fiber-reinforced onlay composite resin restoration: a case report. J Contemp Dent Pract. 2009;10:104–10.

    PubMed  Google Scholar 

  47. Garoushi S, Tanner J, Vallittu PK, Lassila L. Preliminary clinical evaluation of short fiber-reinforced composite resin in posterior teeth: 12-months report. Open Dent J. 2012;6:41–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013;29:835–41.

    Article  PubMed  Google Scholar 

  49. Bijelic-Donova J, Garoushi S, Vallittu PK, Lassila L. Mechanical properties, fracture resistance, and fatigue limits of short fiber reinforced dental composite resin. J Prosthet Dent. 2016;115:95–102.

    Article  PubMed  Google Scholar 

  50. Garoushi S, Vallittu PK, Watts DC, Lassila LV. Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dent Mater. 2008;24:211–5.

    Article  PubMed  Google Scholar 

  51. Garoushi S, Lassila LVJ, Vallittu P. Fiber-reinforced composite in clinical dentistry. Chin J Dent Res. 2008;11:101–8.

    Google Scholar 

  52. Khan AS, Azam MT, Khan M, Mian SA, Ur Rehman I. An update on glass fiber dental restorative composites: a systematic review. Mater Sci Eng C Mater Biol Appl. 2015;47:26–39.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufyan Garoushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Garoushi, S. (2018). Fiber-Reinforced Composites. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics