Skip to main content

Secondary Caries

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

Secondary or recurrent caries is a new caries lesion developing at the margin of an existing restoration, and is considered to be the most common reason for restoration failure. The aim of this chapter is to give an overview of the factors related to the presence of the restoration, as well as to the properties of composite restorative materials, which might contribute to the progression of caries along the tooth-restoration interface. It is important to note that, except for the intrinsic properties of dental composite materials related to their specific composition, the influence of certain factors can be minimized by a careful placement procedure of direct composite restorations, which could reduce the susceptibility of a restoration to secondary caries and ultimately improve its clinical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mjor IA, Toffenetti F. Secondary caries: a literature review with case reports. Quintessence Int. 2000;31(3):165–79.

    PubMed  Google Scholar 

  2. Opdam NJ, et al. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014;93(10):943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seemann R, et al. Restorative dentistry and restorative materials over the next 20 years: a Delphi survey. Dent Mater. 2014;30(4):442–8.

    Article  PubMed  Google Scholar 

  4. Mjor IA. Clinical diagnosis of recurrent caries. J Am Dent Assoc. 2005;136(10):1426–33.

    Article  PubMed  Google Scholar 

  5. Bader JD, Shugars DA. Understanding dentists' restorative treatment decisions. J Public Health Dent. 1992;52(2):102–10.

    Article  PubMed  Google Scholar 

  6. Nedeljkovic I, et al. Is secondary caries with composites a material-based problem? Dent Mater. 2015;31(11):e247–77.

    Article  PubMed  Google Scholar 

  7. Mjor IA. The location of clinically diagnosed secondary caries. Quintessence Int. 1998;29(5):313–7.

    PubMed  Google Scholar 

  8. Rasines Alcaraz MG, et al. Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth. Cochrane Database Syst Rev. 2014;3:CD005620.

    Google Scholar 

  9. Moraschini V, et al. Amalgam and resin composite longevity of posterior restorations: a systematic review and meta-analysis. J Dent. 2015;43(9):1043–50.

    Article  PubMed  Google Scholar 

  10. McComb D, et al. A clinical comparison of glass ionomer, resin-modified glass ionomer and resin composite restorations in the treatment of cervical caries in xerostomic head and neck radiation patients. Oper Dent. 2002;27(5):430–7.

    PubMed  Google Scholar 

  11. Kidd EA. Microleakage in relation to amalgam and composite restorations. A laboratory study. Br Dent J. 1976;141(10):305–10.

    Article  PubMed  Google Scholar 

  12. Hals E, Nernaes A. Histopathology of in vitro caries developing around silver amalgam fillings. Caries Res. 1971;5(1):58–77.

    Article  PubMed  Google Scholar 

  13. Hals E, Andreassen BH, Bie T. Histopathology of natural caries around silver amalgam fillings. Caries Res. 1974;8(4):343–58.

    Article  PubMed  Google Scholar 

  14. Barata JS, et al. Influence of gaps in adhesive restorations in the development of secondary caries lesions: an in situ evaluation. Am J Dent. 2012;25(4):244–8.

    PubMed  Google Scholar 

  15. Fejerskov O, Kidd EAM. Dental caries: the disease and its clinical management. 2nd ed. Oxford; Ames, Iowa: Blackwell Munksgaard; 2008. 616 p.

    Google Scholar 

  16. Gilmour AS, Edmunds DH. The polarized light microscopic appearance of caries-like lesions adjacent to restored cavities in the crowns and roots of extracted human teeth. J Oral Rehabil. 1998;25(12):929–39.

    Article  PubMed  Google Scholar 

  17. Diercke K, et al. Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model. Clin Oral Investig. 2009;13(4):439–44.

    Article  PubMed  Google Scholar 

  18. Kuper NK, et al. Gap size and wall lesion development next to composite. J Dent Res. 2014;93(7 suppl):108S–13S.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thomas RZ, et al. Approximal secondary caries lesion progression, a 20-week in situ study. Caries Res. 2007;41(5):399–405.

    Article  PubMed  Google Scholar 

  20. Montagner AF, et al. Behavior of failed bonded interfaces under in vitro cariogenic challenge. Dent Mater. 2016;32(5):668–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tay FR, et al. Variability in microleakage observed in a total-etch wet-bonding technique under different handling conditions. J Dent Res. 1995;74(5):1168–78.

    Article  PubMed  Google Scholar 

  22. Hilton TJ. Can modern restorative procedures and materials reliably seal cavities? In vitro investigations. Part 1. Am J Dent. 2002;15(3):198–210.

    PubMed  Google Scholar 

  23. Pioch T, et al. Nanoleakage at the composite-dentin interface: a review. Am J Dent. 2001;14(4):252–8.

    PubMed  Google Scholar 

  24. De Munck J, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84(2):118–32.

    Article  PubMed  Google Scholar 

  25. Van Landuyt KL, et al. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J Adhes Dent. 2009;11(3):175–90.

    PubMed  Google Scholar 

  26. Opdam NJ, et al. Porosities and voids in class I restorations placed by six operators using a packable or syringable composite. Dent Mater. 2002;18(1):58–63.

    Article  PubMed  Google Scholar 

  27. Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater. 2005;21(1):36–42.

    Article  PubMed  Google Scholar 

  28. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962–70.

    Article  PubMed  Google Scholar 

  29. Ferracane JL, Mitchem JC. Relationship between composite contraction stress and leakage in class V cavities. Am J Dent. 2003;16(4):239–43.

    PubMed  Google Scholar 

  30. Moreira da Silva E, et al. The influence of C-factor, flexural modulus and viscous flow on gap formation in resin composite restorations. Oper Dent. 2007;32(4):356–62.

    Article  PubMed  Google Scholar 

  31. Bakhsh TA, et al. Concurrent evaluation of composite internal adaptation and bond strength in a class-I cavity. J Dent. 2013;41(1):60–70.

    Article  PubMed  Google Scholar 

  32. Park J, et al. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater. 2008;24(11):1501–5.

    Article  PubMed  Google Scholar 

  33. Lu H, Stansbury JW, Bowman CN. Impact of curing protocol on conversion and shrinkage stress. J Dent Res. 2005;84(9):822–6.

    Article  PubMed  Google Scholar 

  34. Hashimoto M, et al. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res. 2000;79(6):1385–91.

    Article  PubMed  Google Scholar 

  35. Ben-Amar A, Cardash HS, Judes H. The sealing of the tooth/amalgam interface by corrosion products. J Oral Rehabil. 1995;22(2):101–4.

    Article  PubMed  Google Scholar 

  36. Van Meerbeek B, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003;28(3):215–35.

    PubMed  Google Scholar 

  37. Kermanshahi S, et al. Biodegradation of resin-dentin interfaces increases bacterial microleakage. J Dent Res. 2010;89(9):996–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bourbia M, et al. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res. 2013;92(11):989–94.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qvist V. The effect of mastication on marginal adaptation of composite restorations in vivo. J Dent Res. 1983;62(8):904–6.

    Article  PubMed  Google Scholar 

  40. Francisconi LF, et al. The effects of occlusal loading on the margins of cervical restorations. J Am Dent Assoc. 2009;140(10):1275–82.

    Article  PubMed  Google Scholar 

  41. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999;27(2):89–99.

    Article  PubMed  Google Scholar 

  42. Kuper NK, et al. Hydrodynamic flow through loading and in vitro secondary caries development. J Dent Res. 2013;92(4):383–7.

    Article  PubMed  Google Scholar 

  43. Konishi N, et al. Confocal laser scanning microscopic analysis of early plaque formed on resin composite and human enamel. J Oral Rehabil. 2003;30(8):790–5.

    Article  PubMed  Google Scholar 

  44. de Fucio SB, et al. Analyses of biofilms accumulated on dental restorative materials. Am J Dent. 2009;22(3):131–6.

    PubMed  Google Scholar 

  45. Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res. 2015;94(8):1027–34.

    Article  PubMed  Google Scholar 

  46. Kaizer MR, et al. Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies. Dent Mater. 2014;30(4):e41–78.

    Article  PubMed  Google Scholar 

  47. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13(4):258–69.

    Article  PubMed  Google Scholar 

  48. Teughels W, et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(Suppl 2):68–81.

    Article  PubMed  Google Scholar 

  49. Buergers R, et al. Streptococcal adhesion to novel low-shrink silorane-based restorative. Dent Mater. 2009;25(2):269–75.

    Article  PubMed  Google Scholar 

  50. Claro-Pereira D, et al. In situ evaluation of a new silorane-based composite resin's bioadhesion properties. Dent Mater. 2011;27(12):1238–45.

    Article  PubMed  Google Scholar 

  51. van Loosdrecht MC, et al. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol. 1987;53(8):1893–7.

    PubMed  PubMed Central  Google Scholar 

  52. Hahnel S, et al. Surface properties and in vitro Streptococcus Mutans adhesion to dental resin polymers. J Mater Sci Mater Med. 2008;19(7):2619–27.

    Article  PubMed  Google Scholar 

  53. Yamamoto K, et al. Adherence of oral streptococci to composite resin of varying surface roughness. Dent Mater J. 1996;15(2):201–4.

    Article  PubMed  Google Scholar 

  54. Ruttermann S, et al. Bacterial viability on surface-modified resin-based dental restorative materials. Arch Oral Biol. 2012;57(11):1512–21.

    Article  PubMed  Google Scholar 

  55. Ikeda M, et al. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites. Dent Mater J. 2007;26(6):915–23.

    Article  PubMed  Google Scholar 

  56. Hansel C, et al. Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res. 1998;77(1):60–7.

    Article  PubMed  Google Scholar 

  57. Takahashi Y, et al. Influence of resin monomers on growth of oral streptococci. J Dent Res. 2004;83(4):302–6.

    Article  PubMed  Google Scholar 

  58. Nedeljkovic I, et al. No evidence for the growth-stimulating effect of monomers on cariogenic streptococci. Clin Oral Investig. 2017;21(5):1861–9.

    Article  PubMed  Google Scholar 

  59. Brambilla E, et al. The influence of light-curing time on the bacterial colonization of resin composite surfaces. Dent Mater. 2009;25(9):1067–72.

    Article  PubMed  Google Scholar 

  60. Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007;35(3):201–6.

    Article  PubMed  Google Scholar 

  61. Nedeljkovic I, et al. Lack of buffering by composites promotes shift to more cariogenic bacteria. J Dent Res. 2016;95(8):875–81.

    Article  PubMed  Google Scholar 

  62. Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater. 2003;19(6):449–57.

    Article  PubMed  Google Scholar 

  63. Chen L, Shen H, Suh BI. Antibacterial dental restorative materials: a state-of-the-art review. Am J Dent. 2012;25(6):337–46.

    PubMed  Google Scholar 

  64. Wang Z, Shen Y, Haapasalo M. Dental materials with antibiofilm properties. Dent Mater. 2014;30(2):e1–e16.

    Article  PubMed  Google Scholar 

  65. Saku S, et al. Antibacterial activity of composite resin with glass-ionomer filler particles. Dent Mater J. 2010;29(2):193–8.

    Article  PubMed  Google Scholar 

  66. van de Sande FH, et al. The influence of different restorative materials on secondary caries development in situ. J Dent. 2014;42(9):1171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8(2):263–71.

    Article  PubMed  Google Scholar 

  68. Thomas RZ, et al. Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study. Oral Microbiol Immunol. 2008;23(1):7–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Nedeljkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nedeljkovic, I., Van Landuyt, K.L. (2018). Secondary Caries. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics