Virtual System for Upper Limbs Rehabilitation in Children

  • Edwin PrunaEmail author
  • Andrés Acurio
  • Jenny Tigse
  • Ivón Escobar
  • Marco Pilatásig
  • Pablo Pilatásig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)


A virtual system is presented for upper limbs rehabilitation in children using a haptic device and oculus rift. Two interactive games were created in Unity 3D with daily tasks and easy execution. In addition, the virtual system was used by two groups of children (CP and Down Syndrome) with mild spasticity, the same ones who performed the exercise. The movements allowed by the system help in the rehabilitation of the hands and in hand-eye coordination. The participants completed a SEQ usability test with results (52 ± 0.43) by group 1 and (53,5 ± 0,72) by group 2. The outcomes allow determining that the system has a good acceptance to be used in rehabilitation. Children in group 2 (Down Syndrome) achieved to manage the system successfully despite intellectual and ocular difficulties.


Haptic device Oculus Rift Unity 3D SEQ Rehabilitation 



We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.


  1. 1.
    Li, D., Tan, Z., Kang, P., Shen, B., Pei, F.: Effects of multi-site infiltration analgesia on pain management and early rehabilitation compared with femoral nerve or adductor canal block for patients undergoing total knee arthroplasty: a prospective randomized controlled trial. Int. Orthop. 41(1), 75–83 (2017)CrossRefGoogle Scholar
  2. 2.
    Bax, M., Goldstein, M., Rosenbaum, P., et al.: Proposed definition and classification of cerebral palsy. Dev. Med. Child Neurol. 47, 571–576 (2005)CrossRefGoogle Scholar
  3. 3.
    Oskoui, M., Coutinho, F., Dykeman, J., et al.: An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev. Med. Child Neurol. 55, 509–519 (2013)CrossRefGoogle Scholar
  4. 4.
    Aicardi, J.: Disease of the Nervous System in Childhood. MacKeith Press, London (1992)Google Scholar
  5. 5.
    Candel, I.: Programa de atención temprana. Intervención en niños con síndrome de Down y otros problemas de desarrollo, CEPE, Madrid (2005)Google Scholar
  6. 6.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  7. 7.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  8. 8.
    Boyd, R.N., Morris, M.E., Graham, H.K.: Management of upper limb dysfunction in children with cerebral palsy: a systematic review. Eur. J. Neurol. 8(Suppl. 5), 150–166 (2001)CrossRefGoogle Scholar
  9. 9.
    Fetters, L.: Measurement and treatment in cerebral palsy: an argument for a new approach. Phys. Ther. 71(3), 244–247 (1991)CrossRefGoogle Scholar
  10. 10.
    Ketelaar, M., Vermeer, A., Hart, H., Van Petegem-van Beek, E., Helders, P.J.M.: Effects of a functional therapy program on motor abilities of children with cerebral palsy. Phys. Ther. 81(9), 1534–1545 (2001)CrossRefGoogle Scholar
  11. 11.
    Sakzewski, L., Ziviani, J., Boyd, R.: Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics 123(6), e1111–e1122 (2009)CrossRefGoogle Scholar
  12. 12.
    Sakzewski, L., Ziviani, J., Boyd, R.N.: Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics 133(1), e175–e204 (2014)CrossRefGoogle Scholar
  13. 13.
    Novak, I., Mcintyre, S., Morgan, C., et al.: A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev. Med. Child Neurol. 55(10), 885–910 (2013)CrossRefGoogle Scholar
  14. 14.
    Löwing, K., Bexelius, A., Carlberg, E.B.: Activity focused and goal directed therapy for children with cerebral palsy: do goals make a difference? Disabil. Rehabil. 31(22), 1808–1816 (2009)CrossRefGoogle Scholar
  15. 15.
    Fetters, L.: Perspective on variability in the development of human action. Phys. Ther. 90(12), 1860–1867 (2010)CrossRefGoogle Scholar
  16. 16.
    Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)CrossRefGoogle Scholar
  17. 17.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  18. 18.
    Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)CrossRefGoogle Scholar
  19. 19.
    Levac, D.E., Galvin, J.: When is virtual reality “therapy”? Arch. Phys. Med. Rehabil. 94(795), 8 (2013)Google Scholar
  20. 20.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)CrossRefGoogle Scholar
  21. 21.
    Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 27(7), 2151–2154 (2015)
  22. 22.
    Sucar, L.E., et al.: Gesture therapy: an upper limb virtual reality - based motor rehabilitation platform. Trans. Neural Syst. Rehabil. Eng. 22, 634–643 (2014)CrossRefGoogle Scholar
  23. 23.
    Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. (2015). doi: 10.1002/14651858
  24. 24.
    Tatla, S.K., Shirzad, N., Lohse, K.R., Virji-Babul, N., Hoens, A.M., Holsti, L., et al.: Therapists’ perceptions of social media and video game technologies in upper limb rehabilitation. JMIR Serious Games. 3(1), e2 (2015). doi: 10.2196/games.3401 CrossRefGoogle Scholar
  25. 25.
    Colomer, C., Llorens, R., Noé, E., Alcañiz, M.: Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J. Neuro Eng. Rehabil. 13, 45 (2016).
  26. 26.
    Sveistrup, H., Thornton, M., Brvanton, C., et al.: Outcomes of intervention programs using flatscreen virtual reality. In: Conference Proceedings IEEE Eng Medicine and Biology Society vol. 7, 4856–4858 (2004)Google Scholar
  27. 27.
    Chen, Y.-P., Kang, L.-J., Chuang, T.-Y., Doong, J.-L., Lee, S.-J., Tsai, M.-W., Jeng, S.-F., Sung, W.-H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Ther. 87(11), 1441–1457 (2007). doi: 10.2522/ptj.20060062 CrossRefGoogle Scholar
  28. 28.
    Dhiman, A., Solanki, D., Bhasin, A., Bhise, A., Das, A., Lahiri, U.: Design of adaptive haptic-enabled virtual reality based system for upper limb movement disorders: a usability study. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, pp. 1254–1259 (2016)Google Scholar
  29. 29.
    Li, S., Zhang, X.: Eye-movement-based objective real-time quantification of patient’s mental engagement in rehabilitation: a preliminary study. In: 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, pp. 180–185 (2014)Google Scholar
  30. 30.
    Shah, N., Basteris, A., Amirabdollahian, F.: Design parameters in multimodal games for rehabilitation. Games Health Res. Dev. Clin. Appl. 3(1), 13–20 (2014)CrossRefGoogle Scholar
  31. 31.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. application in a virtual rehabilitation system for balance rehabilitation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)Google Scholar
  32. 32.
    Fitzgerald, D., Kelly, D., Ward, T., Markham, C., Caulfield, B.: Usability evaluation of e-motion: a virtual rehabilitation system designed to demonstrate, instruct and monitor a therapeutic exercise programme. In: Proceedings Virtual Rehabilitation, pp. 144–149 (2008)Google Scholar
  33. 33.
    Kalawsky, R.S.: VRUSE–a computerised diagnostic tool: for usability evaluation of virtual/synthetic environment systems. Appl. Ergon. 30, 11–25 (1999)CrossRefGoogle Scholar
  34. 34.
    Cameirao, M.S., Badia, S.B., Oller, E.D., Verschure, P.F.: Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation. J. Neuroeng. Rehabil. 7, 48 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edwin Pruna
    • 1
    Email author
  • Andrés Acurio
    • 1
  • Jenny Tigse
    • 1
  • Ivón Escobar
    • 1
  • Marco Pilatásig
    • 1
  • Pablo Pilatásig
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations