Virtual Environments for Cognitive and Physical Training in Elderly with Mild Cognitive Impairment: A Pilot Study

  • Sara ArlatiEmail author
  • Andrea Zangiacomi
  • Luca Greci
  • Simona Gabriella di Santo
  • Flaminia Franchini
  • Marco Sacco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)


This work aims at providing an evaluation of the acceptability and the usability of a virtual reality-based intervention developed for the physical and cognitive training of mild cognitive impaired elderlies. To perform this evaluation, participants enrolled in the intervention group (n = 4) of a randomized controlled trial to test the system were interviewed, and their adherence and their performances in the virtual environments for cognitive training were evaluated. In spite of the small sample, the active participation and the unanimous positive judgement of all the participants led to the conclusion that the training program was well accepted and enjoyable. Participants also claimed reduced level of anxiety in their ADL. On the basis of these encouraging results, a second trial, with enlarged sample and with a system implementing the improvements required to overcome the limitations and the problems highlighted with this pilot study, will be performed in the next future.


Virtual reality Dementia Aging Mild Cognitive Impairment 


  1. 1.
    World Health Organization, Dementia: a public health priority. World Health Organization (2012)Google Scholar
  2. 2.
    Haxby, J.V., Rapoport, S.I.: Abnormalities of regional brain metabolism in Alzheimer’s disease and their relation to functional impairment. Progress Neuro-Psychopharmacol. Biol. Psychiatry 10(3), 427–438 (1986). ElsevierCrossRefGoogle Scholar
  3. 3.
    Prvulovic, D., Hubl, D., Sack, A., Melillo, L., Maurer, K., Frölich, L., et al.: Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 17(3), 1403–1414 (2002). ElsevierCrossRefGoogle Scholar
  4. 4.
    Crutch, S.J., Lehmann, M., Schott, J.M., Rabinovici, G.D., Rossor, M.N., Fox, N.C.: Posterior cortical atrophy. Lancet Neurol. 11(2), 170–178 (2012). ElsevierCrossRefGoogle Scholar
  5. 5.
    Mendez, M.: Posterior cortical atrophy: a visual variant of Alzheimer’s disease. In: Vision in Alzheimer’s Disease, pp. 112–125. Karger Publishers (2004)Google Scholar
  6. 6.
    Fukui, T., Lee, E.: Visuospatial function is a significant contributor to functional status in patients with Alzheimer’s disease. American Journal of Alzheimer’s Disease & Other Dementias® 24(4), 313–321 (2009). SAGE Publications Sage CA, Los Angeles, CACrossRefGoogle Scholar
  7. 7.
    Johnson, D.K., Storandt, M., Morris, J.C., Galvin, J.E.: Longitudinal study of the transition from healthy aging to Alzheimer disease. Arch. Neurol. 66(10), 1254–1259 (2009). American Medical AssociationCrossRefGoogle Scholar
  8. 8.
    Rizzo, M., Reinach, S., McGehee, D., Dawson, J.: Simulated car crashes and crash predictors in drivers with Alzheimer disease. Arch. Neurol. 54(5), 545–551 (1997). American Medical AssociationCrossRefGoogle Scholar
  9. 9.
    Ball, K., Owsley, C.: Driving competence: It’s not a matter of age. J. Am. Geriatrics Soc. 51(10), 1499–1501 (2003). Wiley Online LibraryCrossRefGoogle Scholar
  10. 10.
    Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999). American Medical AssociationCrossRefGoogle Scholar
  11. 11.
    Mariani, E., Monastero, R., Mecocci, P.: Mild cognitive impairment: a systematic review. J. Alzheimer’s Dis. 12(1), 23–35 (2007). IOS PressCrossRefGoogle Scholar
  12. 12.
    Beydoun, M.A., Beydoun, H.A., Gamaldo, A.A., Teel, A., Zonderman, A.B., Wang, Y.: Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 14(1), 643 (2014). BioMed CentralCrossRefGoogle Scholar
  13. 13.
    Andrieu, S., Coley, N., Lovestone, S., Aisen, P.S., Vellas, B.: Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol. 14(9), 926–944 (2015). ElsevierCrossRefGoogle Scholar
  14. 14.
    Willis, S.L., Tennstedt, S.L., Marsiske, M., Ball, K., Elias, J., Koepke, K.M., et al.: Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA 296(23), 2805–2814 (2006). American Medical AssociationCrossRefGoogle Scholar
  15. 15.
    Reijnders, J., van Heugten, C., van Boxtel, M.: Cognitive interventions in healthy older adults and people with mild cognitive impairment: a systematic review. Ageing Res. Rev. 12(1), 263–275 (2013). ElsevierCrossRefGoogle Scholar
  16. 16.
    Wolinsky, F.D., Unverzagt, F.W., Smith, D.M., Jones, R., Wright, E., Tennstedt, S.L.: The effects of the ACTIVE cognitive training trial on clinically relevant declines in health-related quality of life. J. Gerontol. 61(5), S281–S287 (2006). Oxford University PressCrossRefGoogle Scholar
  17. 17.
    Calero-Garcia, M.D., Navarro-González, E., Muñoz-Manzano, L.: Influence of level of activity on cognitive performance and cognitive plasticity in elderly persons. Arch. Gerontol. Geriatr. 45(3), 307–318 (2007)CrossRefGoogle Scholar
  18. 18.
    Calero, M.D., Dolores, M., Navarro, E.: Cognitive plasticity as modulating variable on the effects of memory training in elderly persons. Arch. Clin. Neuropsychol. 22(1), 63–72 (2007)CrossRefGoogle Scholar
  19. 19.
    Bamidis, P.D., Fissler, P., Papageorgiou, S.G., Zilidou, V., Konstantinidis, E.I., Billis, A.S., Tsilikopoulou, G.: Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Frontiers Aging Neurosci. 7, 152 (2015)CrossRefGoogle Scholar
  20. 20.
    García-Betances, R.I., Jiménez-Mixco, V., Arredondo, M.T., Cabrera-Umpiérrez, M.F.: Using virtual reality for cognitive training of the elderly. Am. J. Alzheimer’s Dis. Other Dementias 30(1), 49–54 (2015). SAGE PublicationsCrossRefGoogle Scholar
  21. 21.
    Flynn, D., Van, S.P., Blackman, T., Femcott, C., Hobbs, B., Calderon, C.: Developing a virtual reality–based methodology for people with dementia: a feasibility study. CyberPsychol. Behav. 6(6), 591–611 (2003). Mary Ann Liebert, Inc.CrossRefGoogle Scholar
  22. 22.
    Coyle, H., Traynor, V., Solowij, N.: Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: systematic review of the literature. Am. J. Geriatric Psychiatry 23(4), 335–359 (2015). ElsevierCrossRefGoogle Scholar
  23. 23.
    Sacco, M., Redaelli, C., Zangiacomi, A., Greci, L., Di Santo, S., Leone, A., Vezzoli, A.: GOJI an advanced virtual environment supporting training of physical and cognitive activities to prevent dementia occurrence in elderly with minor cognitive disorders. In: Andò, B., Siciliano, P., Marletta, V., Monteriù, A. (eds.) Ambient Assisted Living. Biosystems & Biorobotics, vol. 11, pp. 429–437. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  24. 24.
    Venkatesh, V.: Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf. Syst. Res. 11(4), 342–365 (2000). InformsCrossRefGoogle Scholar
  25. 25.
    Dillon, A., Morris, M.G.: User acceptance of new information technology: theories and models. In: Annual Review of Information Science and Technology. Information Today, Medford (1996)Google Scholar
  26. 26.
    Mazzoleni, S., Turchetti, G., Palla, I., Posteraro, F., Dario, P.: Acceptability of robotic technology in neuro-rehabilitation: Preliminary results on chronic stroke patients. Comput. Methods Programs Biomed. 116(2), 116–122 (2014). ElsevierCrossRefGoogle Scholar
  27. 27.
    Marzorati, M., Di Santo, S.G., Mrakic-Sposta, S., Moretti, S., Jesuthasan, N., Caroppo, A., et al.: Supporting physical and cognitive training for preventing the occurrence of dementia using an integrated system: a pilot study. In: 6th EAI International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies, Milan, Italy, 14–16 November 2016. Springer (2016) (In press)Google Scholar
  28. 28.
    Alloni, A., Sinforiani, E., Zucchella, C., Sandrini, G., Bernini, S., Cattani, B., et al.: Computer-based cognitive rehabilitation: the CoRe system. Disab. Rehabil., 1–11 (2015). Taylor & FrancisGoogle Scholar
  29. 29.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Techn. J. 29(2), 147–160 (1950). Wiley Online LibraryMathSciNetCrossRefGoogle Scholar
  30. 30.
    Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998). IEEECrossRefGoogle Scholar
  31. 31.
    García-Vergara, S., Howard, A.M.: Three-dimensional fitt’s law model used to predict movement time in serious games for rehabilitation. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8526, pp. 287–297. Springer, Cham (2014). doi: 10.1007/978-3-319-07464-1_27 Google Scholar
  32. 32.
    Ferris, S.H., Farlow, M.: Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin. Interv. Aging 8, 1007–1014 (2013)CrossRefGoogle Scholar
  33. 33.
    Daum, I., Quinn, N.: Reaction times and visuospatial processing in Parkinson’s disease. J. Clin. Exp. Neuropsychol. 13(6), 972–982 (1991). Taylor & FrancisCrossRefGoogle Scholar
  34. 34.
    Carpenter, P.A., Just, M.A., Keller, T.A., Eddy, W., Thulborn, K.: Graded functional activation in the visuospatial system with the amount of task demand. J. Cogn. Neurosci. 11(1), 9–24 (1999). MIT PressCrossRefGoogle Scholar
  35. 35.
    Oxley, J.A., Fildes, B., Ihsen, E., Charlton, J.L., Day, R.H.: Simulation of the road crossing task for older and younger adult pedestrians: a validation study. In: Road Safety Research and Enforcement Conference, 1997, Hobart, Tasmania, Australia (1997)Google Scholar
  36. 36.
    Holland, C.A., Rabbitt, P.: People’s awareness of their age-related sensory and cognitive deficits and the implications for road safety. Appl. Cogn. Psychol. 6(3), 217–231 (1992)CrossRefGoogle Scholar
  37. 37.
    Daigneault, G., Joly, P., Frigon, J.Y.: Executive functions in the evaluation of accident risk of older drivers. J. Clin. Exp. Neuropsychol. 24(2), 221–238 (2002)CrossRefGoogle Scholar
  38. 38.
    Oxley, J.A., Ihsen, E., Fildes, B.N., Charlton, J.L., Day, R.H.: Crossing roads safely: an experimental study of age differences in gap selection by pedestrians. Accid. Anal. Prev. 37(5), 962–971 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sara Arlati
    • 1
    • 2
    Email author
  • Andrea Zangiacomi
    • 2
  • Luca Greci
    • 2
  • Simona Gabriella di Santo
    • 3
  • Flaminia Franchini
    • 3
  • Marco Sacco
    • 2
  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Institute of Industrial Technologies and AutomationNational Research CouncilMilanItaly
  3. 3.IRCCS Fondazione Santa LuciaRomeItaly

Personalised recommendations