Architecture of a Virtual Reality and Semantics-Based Framework for the Return to Work of Wheelchair Users

  • Sara Arlati
  • Daniele Spoladore
  • Stefano MotturaEmail author
  • Andrea Zangiacomi
  • Giancarlo Ferrigno
  • Rinaldo Sacchetti
  • Marco Sacco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)


Being reintegrated at work after an accident constitutes an important milestone to recover a good quality of life, especially for severely injured people forced on a wheelchair after a trauma. The presented framework exploits virtual reality technologies with the aim of supporting these people in gaining awareness of their new conditions, providing them training in simulated and riskless environments. During the training, that addresses key aspects related to mobility, upper body preservations and return to work, the behaviors of the users are tracked to assess their functional level. The evaluation of these data, in addition to the expertise of the clinical personnel, is used to determine the wheelchairs user’s health condition, which is properly formalized in a semantic data model. This model then allows inferring the jobs that are still suitable for each specific user and the most appropriate level of difficulty of the tasks proposed in the virtual environments.


Virtual reality Ontology Semantic data model User-centered design Return to work Wheelchair users Vocational rehabilitation 


  1. 1.
    Brault, M.W., et al.: Americans with disabilities: 2010. Current population reports, vol. 7, pp. 0–131. US Census Bureau Washington, DC (2012)Google Scholar
  2. 2.
    Smith, E.M., Sakakibara, B.M., Miller, W.C.: A review of factors influencing participation in social and community activities for wheelchair users. Disab. Rehabil. Assistive Technol. 11(5), 361–374 (2016). Taylor & FrancisGoogle Scholar
  3. 3.
    Gray, D.B., Morgan, K.A., Gottlieb, M., Hollingsworth, H.H.: Person factors and work environments of workers who use mobility devices. Work 48(3), 349–359 (2014). IOS PressGoogle Scholar
  4. 4.
    Valtonen, K., Karlsson, A.-K., Alaranta, H., Viikari-Juntura, E.: Work participation among persons with traumatic spinal cord injury and meningomyelocele1. J. Rehabil. Med. 38(3), 192–200 (2006). Medical Journals LimitedCrossRefGoogle Scholar
  5. 5.
    Leduc, B.E., Lepage, Y.: Health-related quality of life after spinal cord injury. Disab. Rehabil. 24(4), 196–202 (2002). Taylor & FrancisCrossRefGoogle Scholar
  6. 6.
    Melin, R., Fugl-Meyer, K.S., Fugl-Meyer, A.R.: Life satisfaction in 18-to 64-year-old Swedes: in relation to education, employment situation, health and physical activity. J. Rehabil. Med. 35(2), 84–90 (2003). Taylor & Francis, Stockholm, Sweden (2001)CrossRefGoogle Scholar
  7. 7.
    Huppert, F.A., Whittington, J.E.: Evidence for the independence of positive and negative well-being: Implications for quality of life assessment. British J. Health Psychol. 8(1), 107–122 (2003). Wiley Online LibraryCrossRefGoogle Scholar
  8. 8.
    Pithon, T., Weiss, T., Richir, S., Klinger, E.: Wheelchair simulators: a review. Technol. Disab. 21(1, 2), 1–10Google Scholar
  9. 9.
    Maclean, N., Pound, P.: A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 50(4), 495–506 (2000). ElsevierCrossRefGoogle Scholar
  10. 10.
    Bayón-Calatayud, M., Peri, E., Nistal, F.F., Duff, M., Nieto-Escámez, F., Lange, B., et al.: Virtual Rehabilitation. In: Pons, L.J., Raya, R., González, J. (eds.) Emerging Therapies in Neurorehabilitation II, pp. 303–318. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  11. 11.
    Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F.I., Perry, J.C., Keller, T.: Improving patient motivation in game development for motor deficit rehabilitation. In: Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, pp. 381–384. ACM (2008)Google Scholar
  12. 12.
    Trotter, J.: Wheelchair users’ problems with community living. Can. Fam. Physician 31, 1493 (1985). College of Family Physicians of CanadaGoogle Scholar
  13. 13.
    Adriaansen, J.J., Post, M.W., de Groot, S., van Asbeck, F.W., Stolwijk-Swüste, J.M., Tepper, M., et al.: Secondary health conditions in persons with spinal cord injury: a longitudinal study from one to five years post-discharge. J. Rehabil. Med. 45(10), 1016–1022 (2013). Medical Journals LimitedCrossRefGoogle Scholar
  14. 14.
    Mulroy, S.J., Thompson, L., Kemp, B., Hatchett, P.P., Newsam, C.J., Lupold, D.G., et al.: Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: a randomized controlled trial. Phys. Therapy 91(3), 305–324 (2011). American Physical Therapy AssociationCrossRefGoogle Scholar
  15. 15.
    PV of America Consortium for Spinal Cord Medicine, et al.: Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals. J. Spinal Cord Med. 28(5), 434 (2005). Maney PublishingGoogle Scholar
  16. 16.
    International Classification of Functioning, Disability and Health (ICF).
  17. 17.
    Gruber, T.R., et al.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  18. 18.
    Kirby, R.L.: Wheelchair Skills Program (WSP), Version 4.1. Wheelchair Skills Test (WST) Manual (2008)Google Scholar
  19. 19.
    Best, K.L., Routhier, F., Miller, W.C.: A description of manual wheelchair skills training: current practices in Canadian rehabilitation centers. Disab. Rehabil. Assistive Technol. 10(5), 393–400 (2015). Taylor & FrancisCrossRefGoogle Scholar
  20. 20.
    MacPhee, A.H., Kirby, R.L., Coolen, A.L., Smith, C., MacLeod, D.A., Dupuis, D.J.: Wheelchair skills training program: A randomized clinical trial of wheelchair users undergoing initial rehabilitation. Arch. Phys. Med. Rehabil. 85(1), 41–50 (2004). ElsevierCrossRefGoogle Scholar
  21. 21.
    Hicks, A., Martin, K., Ditor, D., Latimer, A., Craven, C., Bugaresti, J., et al.: Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41(1), 34–43 (2003). Nature Publishing GroupCrossRefGoogle Scholar
  22. 22.
    Boninger, M.L., Koontz, A.M., Sisto, S.A., Dyson-Hudson, T.A., et al.: Pushrim biomechanics and injury prevention in spinal cord injury: recommendations based on CULP-SCI investigations. J. Rehabil. Res. Dev. 42(3), 9 (2005). Superintendent of DocumentsGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Francescutti, C., Frattura, L., Troiano, R., Gongolo, F., Martinuzzi, A., Sala, M., et al.: Towards a common disability assessment framework: theoretical and methodological issues for providing public services and benefits using ICF. Disabil. Rehabil. 31(Suppl. 1), S8–S15 (2009). Taylor & FrancisCrossRefGoogle Scholar
  28. 28.
    Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M., Mottola, M.: A formal approach to ontology-based semantic match of skills descriptions. J. UCS 9(12), 1437–1454 (2003)Google Scholar
  29. 29.
  30. 30.
    Gait Real Time Analysis Interactive Lab (GRAIL).
  31. 31.
    Alshaer, A., Hoermann, S., Regenbrecht, H.: Influence of peripheral and stereoscopic vision on driving performance in a power wheelchair simulator system. In: 2013 International Conference on Virtual Rehabilitation (ICVR), pp. 164–152. IEEE (2013)Google Scholar
  32. 32.
    Alshaer, A., Regenbrecht, H., O’Hare, D.: Immersion factors affecting perception and behaviour in a virtual reality power wheelchair simulator. Appl. Ergon. 58, 1–12 (2017). ElsevierCrossRefGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    Unity3D Game Engine.
  36. 36.
    Web Ontology Language (OWL).
  37. 37.
    SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
  38. 38.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007). ElsevierCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sara Arlati
    • 1
  • Daniele Spoladore
    • 2
  • Stefano Mottura
    • 2
    Email author
  • Andrea Zangiacomi
    • 2
  • Giancarlo Ferrigno
    • 1
  • Rinaldo Sacchetti
    • 3
  • Marco Sacco
    • 2
  1. 1.Politecnico di MilanoMilanItaly
  2. 2.Istituto di Tecnologie Industriali e Automazione – Consiglio Nazionale delle RicercheITIA-CNRMilanItaly
  3. 3.Istituto Nazionale Assicurazione Infortuni sul LavoroINAILBudrioItaly

Personalised recommendations