Augmented Reality and MYO for a Touchless Interaction with Virtual Organs

  • Chiara IndraccoloEmail author
  • Lucio T. De Paolis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)


Recent years have seen revolutionary changes in CAS field thanks to the introduction of advanced Augmented Reality technologies. In this brief will be presented the overall study carried out in order to develop an AR application to support the doctor during the surgery. It will be described the way the surgeon can perform a more accurate diagnosis by using not just the traditional bidimensional grey-scale CT/MRI images, but also a more realistic three-dimensional marker-based visualization of the patient’s organs. Specific focus will be given to the extremely beneficial way the surgeon can interact with this kind of digital information in the operating room. It will be presented a highly innovative gesture-control device which allows the doctor to interact with IT equipment in a touchless and as natural as possible way, without coming into contact with it or interrupting the surgery, thus preserving the surgical environment from the danger of contamination.


Augmented reality Computer aided surgery 3D Modeling Myo Armband Touchless interaction 


  1. 1.
    Solér, L.: Realtá Aumentata e Realtá Virtuale applicata alla chirurgia. In: 12th International Computer Graphics Conference, Torino, Piemonte, 27 Ottobre 2011Google Scholar
  2. 2.
    De Paolis, L.T., Pulimeno, M., Aloisio, G.: An augmented reality application for minimally invasive surgery. In: Katashev, A., Dekhtyar, Y., Spigulis, J. (eds.) 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. IFMBE Proceedings, vol. 20, pp. 489–492. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    De Paolis, L.T., Ricciardi, F., Dragoni, A.F., Aloisio, G.: An augmented reality application for the radio frequency ablation of the liver tumors. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6785, pp. 572–581. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21898-9_47 CrossRefGoogle Scholar
  4. 4.
    IRCAD. Institute de Rechérche Contre le Cancers de l’Appareil Digestif, Strasburgo, Francia.
  5. 5.
    “Operation Lindbergh”. A World First in TeleSurgery: The Surgical Act Crosses the Atlantic! Press Conference, 75007, Paris, 19 September 2001Google Scholar
  6. 6.
    CAMP. Computer Aided Medical Procedures, Monaco, Germania.
  7. 7.
    Invitto, S., Faggiano, C., Sammarco, S., De Luca, V., De Paolis, L.T.: Haptic, virtual interaction and motor imagery: entertainment tools and psychophysiological testing. Sensors 2016 16, 394 (2016)Google Scholar
  8. 8.
    The Leap Motion Controller.
  9. 9.
    Sony PlayStation.
  10. 10.
    Nintendo Wii System.
  11. 11.
  12. 12.
    MYO Armband.
  13. 13.
    Tran, D.T., Sakurai, R., Yamazoe, H., Lee, J.H.: Phase segmentation methods for an automatic surgical workflow analysis. Int. J. Biomed. Imaging 2017 (2017). Article ID 1985796Google Scholar
  14. 14.
    3DSlicer. 3DSlicer Documentation.
  15. 15.
    ITKSnap. ITKSnap Documentation.
  16. 16.
    AMIC. Advanced Medical Imaging Center.
  17. 17.
    Radiopaedia. The dictionary of radiology.
  18. 18.
    De Paolis, L.T., De Mauro, A., Raczkowsky, J., Aloisio, G.: Virtual model of the human brain for neurosurgical simulation. Stud. Health Technol. Inf. 150, 811–815 (2009)Google Scholar
  19. 19.
    ARToolKit. ARToolKit Documentation.
  20. 20.
  21. 21.
    Malik, S.: Master of Computer Science. Robust Registration of Virtual Objects for Real-Time Augmented Reality. Carleton University, Ottawa, Ontario, Canada, 8 May 2002Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Innovation for EngineeringUniversity of SalentoLecceItaly

Personalised recommendations