Advertisement

An Augmented Reality System for Maxillo-Facial Surgery

  • Francesco Ricciardi
  • Chiara Copelli
  • Lucio T. De PaolisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)

Abstract

Maxillo-facial surgery is a surgical field where surgical planning and navigation tools are commonly used but there is still a visualization gap among planned surgical activities and those in the operating room. We propose an Augmented Reality platform that includes a planning module and a drill guidance system. Some laboratory tests on 3D printed mandibles have been carried out in order to evaluate the system guidance uncertainty with different sets of fiducial points. The obtained mean value of guidance uncertainty has been of 1.37 mm when 2 anatomical points and 3 implanted screws were used and 1.43 mm when 5 anatomical points were used. The use of three fixed screws reduces the system mean guidance uncertainty and surgeons judged the augmented reality technology helpful in this kind of surgical procedures.

Keywords

Augmented reality Computer-aided surgery Maxillo-facial surgery 

References

  1. 1.
    Bastien, S., Peuchot, B., Tanguy, A.: Augmented reality in spine surgery: critical appraisal and status of development. Stud. Health Technol. Inf. 88, 153–156 (2002)Google Scholar
  2. 2.
    Blackwell, M., Morgan, F., Di Gioia, A.M.: Augmented reality and its future in orthopaedics. Clin. Orthop. Relat. Res. 354, 111–122 (1998)CrossRefGoogle Scholar
  3. 3.
    Meola, A., Cutolo, F., Carbone, M., Cagnazzo, F., Ferrari, M., Ferrari, V.: Augmented reality in neurosurgery: a systematic review. Neurosurg. Rev., 1–12 (2016). Springer, HeidelbergGoogle Scholar
  4. 4.
    De Paolis, L.T., Pulimeno, M., Aloisio, G.: An augmented reality application for minimally invasive surgery. In: Katashev, A., Dekhtyar, Y., Spigulis, J. (eds.) 4th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2008). IFMBE, vol. 20, pp. 489–492. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Marescaux, J., Diana, M., Soler, L.: Augmented reality and minimally invasive surgery. J. Gastroenterol. Hepatol. Res. 2(5), 555–560 (2013)Google Scholar
  6. 6.
    Paolis, L.T., Ricciardi, F., Dragoni, A.F., Aloisio, G.: An augmented reality application for the radio frequency ablation of the liver tumors. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6785, pp. 572–581. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21898-9_47 CrossRefGoogle Scholar
  7. 7.
    Khamene, A., Wacker, F., Vogt, S., Azar, F., Wendt, M., Sauer, F., Lewin, J.: An Augmented Reality system for MRI-guided needle biopsies. Stud. Health Technol. Inf. 94, 151–157 (2003)Google Scholar
  8. 8.
    Bell, R.B.: Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillo-Facial Surg. Clin. North Am. 22(1), 135–156 (2010)CrossRefGoogle Scholar
  9. 9.
    Pham, A.M., Rafii, A.A., Metzger, M.C., Jamali, A., Strong, B.E.: Computer modeling and intraoperative navigation in maxillo-facial surgery. Otolaryngol. Head Neck Surg. 137(4), 624–631 (2007)CrossRefGoogle Scholar
  10. 10.
    De Paolis, L.T., Aloisio, G.: Augmented Reality in Minimally Invasive Surgery. In: Mukhopadhyay, S.C., Lay-Ekuakille, A. (eds.) Advances in Biomedical Sensing, Measurements, Instrumentation and Systems. LNEE, vol. 55, pp. 305–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Wagner, A., Rasse, M., Millesi, W., Ewers, R.: Virtual reality for orthognathic surgery: The augmented reality environment concept. J. Oral Maxillo-Fac. Surg. 55(5), 456–462 (1997)CrossRefGoogle Scholar
  12. 12.
    Salb, T., Brief, J., Welzel, T., Giesler, B., Hassfeld, S., Muehling, J., Dillmann, R.: Inpres (intraoperative presentation of surgical planning and simulation results) – augmented reality for craniofacial surgery. In: SPIE 5006, Stereoscopic Displays and Virtual Reality Systems (2003)Google Scholar
  13. 13.
    Kahrs, L.A., Hoppe, H., Eggers, G., Raczkowsky, J., Marmulla, R., Wörn, H.: Visualization of surgical 3D information with projector-based augmented reality. Stud. Health Technol. Inf. 111, 243–246 (2005)Google Scholar
  14. 14.
    Mischkowski, R.A., Zinser, M.J., Kübler, A.C., Krug, B., Seifert, U., Zöller, J.E.: Application of an augmented reality tool for maxillary positioning in orthognathic surgery – a feasibility study. J. Cranio-Maxillofac. Surg. 34(8), 478–483 (2006)CrossRefGoogle Scholar
  15. 15.
    Swiatek-Najwer, E., Majak, M., Popek, M., Pietruski, P., Szram, D., Jaworowski, J.: The maxillo-facial surgery system for guided cancer resection and bone reconstruction. In: 36th International Conference on Telecommunications and Signal Processing, pp. 843–847. IEEE (2013)Google Scholar
  16. 16.
    Badiali, G., Ferrari, V., Cutolo, F., Freschi, C., Caramella, D., Bianchi, A., Marchetti, C.: augmented reality as an aid in maxillo-facial surgery: validation of a wearable system allowing maxillary repositioning. J. Cranio-Maxillofac. Surg. 42(8), 1970–1976 (2014)CrossRefGoogle Scholar
  17. 17.
    Pieper, S., Halle, M., Kikinis, R.: 3D slicer. In: 1st IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 632–635 (2004)Google Scholar
  18. 18.
    Enquobahrie, A., Cheng, P., Gary, K., Ibanez, L., Gobbi, D., Lindseth, F., Yaniv, Z., Aylward, S., Jomier, J., Cleary, K.: The image-guided surgery toolkit igstk: An open source C++ software toolkit. J. Digit. Imaging 20(Suppl. 1), 21–33 (2007)CrossRefGoogle Scholar
  19. 19.
    Schroeder, W.J., Martin, K., Lorensen, W.: The visualization toolkit: an object-oriented approach to 3D graphics, 3rd edn. Kitware, Inc. (formerly Prentice-Hall), New York (2003)Google Scholar
  20. 20.
    Qt - cross-platform application & UI development framework. http://www.qt.io
  21. 21.
    Ndi Polaris Vicra. http://www.ndidigital.com
  22. 22.
    Ricciardi, F., Copelli, C., Paolis, L.T.: A pre-operative planning module for an augmented reality application in maxillo-facial surgery. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 244–254. Springer, Cham (2015). doi: 10.1007/978-3-319-22888-4_18 Google Scholar
  23. 23.
    Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4, 629–642 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francesco Ricciardi
    • 1
  • Chiara Copelli
    • 2
  • Lucio T. De Paolis
    • 3
    Email author
  1. 1.Innovation and Research DivisionCasa Sollievo della Sofferenza HospitalSan Giovanni RotondoItaly
  2. 2.Operative Unit of Maxillo-Facial SurgeryCasa Sollievo della Sofferenza HospitalSan Giovanni RotondoItaly
  3. 3.Department of Engineering for InnovationUniversity of SalentoLecceItaly

Personalised recommendations