Advertisement

Steering Versus Teleport Locomotion for Head Mounted Displays

  • Chris G. ChristouEmail author
  • Poppy Aristidou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)

Abstract

We compared the ability to navigate from one point to another in a virtual environment using Gaze-Directed, Pointing and Teleport locomotion. Participant’s start position and destination were shown to them on a map at the beginning of each trial. Participants also had to deviate from their route to collect ‘Pokémon’ tokens: testing their spatial updating ability. Results showed that the two steering methods resulted in increased levels of cybersickness compared to teleporting. In terms of performance, teleporting resulted in faster traversal times but surprisingly was just as effective in allowing users to complete their journey, indicating that user disorientation was not a major issue. The main failing of the teleport method was that it increased the likelihood of missing collectable tokens en route. These results suggest that restricted variants of the teleport method should be explored for use in commercialized VR applications in which real walking is not necessary.

Keywords

Virtual reality Navigation Spatial updating Locomotion Immersive gaming Motion control Steering 

References

  1. 1.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142 (1993)Google Scholar
  2. 2.
    Bowman, D., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer 40, 36–43 (2007)CrossRefGoogle Scholar
  3. 3.
    Darken, R.P., Cockayne, W.R, Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM (1997)Google Scholar
  4. 4.
    Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9. ACM (2014)Google Scholar
  5. 5.
    Bowman, D.A., Kruijff, E., LaViola Jr., J.J., Poupyrev, I.: An introduction to 3-D user interface design. Presence: Teleoperators Virtual Environ. 10, 96–108 (2001)CrossRefGoogle Scholar
  6. 6.
    Montello, D.R.: Navigation. In: Miyake, P.S.A. (ed.) The Cambridge Handbook of Visuospatial Thinking, pp. 257–294. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  7. 7.
    Wiener, J.M., Büchner, S.J., Hölscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cogn. Comput. 9, 152–165 (2009)Google Scholar
  8. 8.
    Bowman, D.A., Kruijff, E., LaViola Jr., J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Redwood City (2004)Google Scholar
  9. 9.
    Thorndyke, P.W., Goldin, S.E.: Spatial Learning and Reasoning Skill. Springer, New York (1983)CrossRefGoogle Scholar
  10. 10.
    Thorndyke, P.W., Hayes-Roth, B.: Differences in spatial knowledge acquired from maps and navigation. Cogn. Psychol. 14, 560–589 (1982)CrossRefGoogle Scholar
  11. 11.
    Ruddle, R.A., Payne, S.J., Jones, D.M.: Navigating buildings in ‘desk-top’ virtual environments: experimental investigations using extended navigational experience. J. Exp. Psychol. Appl. 3, 143–159 (1997)CrossRefGoogle Scholar
  12. 12.
    Presson, C.C., Hazelrigg, M.D.: Building spatial representations through primary and secondary learning. J. Exp. Psychol. Learn. Mem. Cogn. 10(4), 716 (1984)CrossRefGoogle Scholar
  13. 13.
    Levinew, M., Marchon, I., Hanley, G.: The placement and misplacement of you-are-here maps. Environ. Behav. 16(2), 139–157 (1984)CrossRefGoogle Scholar
  14. 14.
    Richardson, A.E., Montello, D.R., Hegarty, M.: Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cogn. 27, 741–750 (1999)CrossRefGoogle Scholar
  15. 15.
    Lessels, S., Ruddle, R.A.: Movement around real and virtual cluttered environments. Presence Teleoperators Virtual Environ. 14, 580–596 (2005)CrossRefGoogle Scholar
  16. 16.
    Darken, R.P., Sibert, J.L.: A toolset for navigation in virtual environments. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, pp. 157–165. ACM (1993)Google Scholar
  17. 17.
    Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence 7, 168–178 (1998)CrossRefGoogle Scholar
  18. 18.
    Ruddle, R.A., Lessels, S.: For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychol. Sci. 17, 460–465 (2006)CrossRefGoogle Scholar
  19. 19.
    Riecke, B.E., Bodenheimer, B., McNamara, Timothy P., Williams, B., Peng, P., Feuereissen, D.: Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, Nora S. (eds.) Spatial Cognition 2010. LNCS, vol. 6222, pp. 234–247. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14749-4_21 CrossRefGoogle Scholar
  20. 20.
    Klatzky, R.L., Loomis, J.M., Beall, A.C., Chance, S.S., Golledge, R.G.: Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol. Sci. 9, 293–298 (1998)CrossRefGoogle Scholar
  21. 21.
    Bowman, D., Koller, D., Hodges, L.F.: Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques. In: Virtual Reality Annual International Symposium, pp. 45–52, 215. IEEE (1997)Google Scholar
  22. 22.
    Bowman, D.A., Koller, D., Hodges, L.F.: A methodology for the evaluation of travel techniques for immersive virtual environments. Virtual Reality 3, 120–131 (1998)CrossRefGoogle Scholar
  23. 23.
    Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. (TOCHI) 2, 201–219 (1995)CrossRefGoogle Scholar
  24. 24.
    Adamo-Villani, N., Jones, D.: Travel in immersive virtual learning environments: a user study with children. IADIS Int. J. Comput. Sci. Info. Syst. 2, 151–161 (2007)Google Scholar
  25. 25.
    Souman, J.L., Giordano, P.R., Schwaiger, M., Frissen, I., Thümmel, T., Ulbrich, H., Luca, A.D., Bülthoff, H.H., Ernst, M.O.: CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. (TAP) 8, 25 (2011)Google Scholar
  26. 26.
    Giordano, P.R., Souman, J., Mattone, R., De Luca, A., Ernst, M., Bulthoff, H.: The CyberWalk platform: humna-machine interaction enabling unconstrained walking through VR. In: First Workshop for Young Researchers on Human-Friendly Robotics (2008)Google Scholar
  27. 27.
    Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput.-Hum. Interact. 16, 1–18 (2009)CrossRefGoogle Scholar
  28. 28.
    Mine, M.: Virtual environment interaction techniques. UNC Chapel Hill computer science technical report TR95-018 507248-507242 (1995)Google Scholar
  29. 29.
    Balk, S.A., Bertola, M.A., Inman, V.W.: Simulator sickness questionnaire: twenty years later. In: Proceedings of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, pp. 257–263 (2013)Google Scholar
  30. 30.
    Alfano, P.L., Michel, G.F.: Restricting the field of view: perceptual and performance effects. Percept. Mot. Skills 70, 35–45 (1990)CrossRefGoogle Scholar
  31. 31.
    Arthur, K.: Effects of field of view on task performance with head-mounted displays. In: Conference Companion on Human Factors in Computing Systems, pp. 29–30. ACM (1996)Google Scholar
  32. 32.
    Christou, C., Tzanavari, A., Herakleous, K., Poullis, C.: Navigation in virtual reality: comparison of gaze-directed and pointing motion control. In: Proceedings of 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6 (2016). doi: 10.1109/MELCON.2016.7495413
  33. 33.
    LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56 (2000)CrossRefGoogle Scholar
  34. 34.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  35. 35.
    Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society annual meeting, pp. 1138–1142. SAGE Publications Sage CA, Los Angeles (1997)Google Scholar
  36. 36.
    Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26, 15–19 (1997)CrossRefGoogle Scholar
  37. 37.
    Hollerbach, J.M.: Locomotion interfaces. In: Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 239–254 (2002)Google Scholar
  38. 38.
    Interrante, V., Ries, B., Anderson, L.: Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In: IEEE Symposium on 3D User Interfaces. IEEE (2007)Google Scholar
  39. 39.
    Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks, Jr., F.P.: Walking > walking-in-place > flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  40. 40.
    Steinicke, F., Bruder, G., Ropinski, T., Hinrichs, K.: Moving towards generally applicable redirected walking. In: Proceedings of the Virtual Reality International Conference (VRIC), pp. 15–24 (2008)Google Scholar
  41. 41.
    Kennedy, R.S., Drexler, J.M., Compton, D.E., Stanney, K.M., Lanham, D.S., Harm, D.L.: Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences. In: Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues, p. 247 (2003)Google Scholar
  42. 42.
    Levine, M., Jankovic, I.N., Palij, M.: Principles of spatial problem solving. J. Exp. Psychol. Gen. 111, 157 (1982)CrossRefGoogle Scholar
  43. 43.
    Berthoz, A., Israël, I., Georges-François, P., Grasso, R., Tsuzuku, T.: Spatial memory of body linear displacement: what is being stored? Science 269, 95 (1995)CrossRefGoogle Scholar
  44. 44.
    Klatzky, R.L., Beall, A.C., Loomis, J.M., Golledge, R.G., Philbeck, J.W.: Human navigation ability: tests of the encoding-error model of path integration. Spatial Cogn. Comput. 1, 31–65 (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of NicosiaNicosiaCyprus

Personalised recommendations