Advertisement

Real-Time 3D Modeling with a RGB-D Camera and On-Board Processing

  • Wilbert G. AguilarEmail author
  • Guillermo A. Rodríguez
  • Leandro Álvarez
  • Sebastián Sandoval
  • Fernando Quisaguano
  • Alex Limaico
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)

Abstract

In this article we present a three dimensional modeling system that generates precise real-time mapping using a RGB-D camera. With the use of the light weight sensors Microsoft Kinect and small and powerful computers like the Intel Stick Core M3 Processor, our system can run all the computation and sensing required to smoothly run SLAM (Simultaneous Localization and Mapping) on-board and in real-time, removing the dependence on unreliable wireless communication. We use visual odometry, loop closure and graph optimization. Our approach is capable of generating accurate maps of several objects analyzing the data yielded by several tests of the system.

Keywords

SLAM RGB-D Loop closure detection Graph optimization Visual odometry RANSAC UAVs 

Notes

Acknowledgement

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

References

  1. 1.
    May, S., Droschel, D., Holz, D., Fuchs, E., Malis, S., Nuchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. J. Field Robot. 26(1), 11–12 (2009)Google Scholar
  2. 2.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE International Conference on Robotics & Automation (2000)Google Scholar
  3. 3.
    Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Reconstructing building interiors from images. In: Proceedings of the International Conference on Computer Vision (2009)Google Scholar
  4. 4.
    Clemente, L., Davison, A., Reid, I., Neira, J., Tardos, J.: Mapping large loops with a single hand-held camera. In: Proceedings of Robotics: Science and Systems (2007)Google Scholar
  5. 5.
    Konolige, K., Agrawal, M.: FrameSLAM: from bundle adjustment to real-time visual mapping. IEEE Trans. Rob. 25, 5 (2008)Google Scholar
  6. 6.
    Whelan, T., Kaess, M., Leonard, J., McDonald, J.: Deformation based loop closure for large scale dense RGB-D SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)Google Scholar
  7. 7.
    Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2013)Google Scholar
  8. 8.
    Michaud, M., Labbe, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Rob. 29(3), 734–745 (2013)CrossRefGoogle Scholar
  9. 9.
    Michaud, M., Labbe, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: Proceedings IEEE/RSJ International Conference Intelligent Robotic Systems, pp. 2661–2666 (2014)Google Scholar
  10. 10.
    Thrun, S.: Robotic mapping: A survey. Exploring Artificial Intelligence in the New Millennium (2003)Google Scholar
  11. 11.
    Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3d. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), 2007Google Scholar
  12. 12.
    Dellaert, F.: Square root SAM. In: Proceedings of Robotics: Science and Systems (RSS), pp. 177–184 (2005)Google Scholar
  13. 13.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)CrossRefGoogle Scholar
  14. 14.
    Jin, H., Favaro, P., Soatto, S.: Real-time 3-D motion and structure of point features: front-end system for vision-based control and interaction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2000)Google Scholar
  15. 15.
    Stuhmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: DAGM Symposium on Pattern Recognition (DAGM) (2010)Google Scholar
  16. 16.
    Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)Google Scholar
  17. 17.
    Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)Google Scholar
  18. 18.
    Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control, Barcelona, Spain (2012)Google Scholar
  19. 19.
    Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2012)Google Scholar
  20. 20.
    Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)CrossRefGoogle Scholar
  21. 21.
    Aguilar, W.G., Morales, S.: 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics 5(4), 70 (2016)CrossRefGoogle Scholar
  22. 22.
    Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)Google Scholar
  23. 23.
    Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)Google Scholar
  24. 24.
    Murray, G., Klein, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR) (2007)Google Scholar
  25. 25.
    Strasdat, H., Montiel, J.M., Davison, A.: Scale drift-aware large scale monocular slam. In: Proceedings of Robotics: Science and Systems (2010)Google Scholar
  26. 26.
    Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)CrossRefGoogle Scholar
  27. 27.
    Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)Google Scholar
  28. 28.
    Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on SystemsGoogle Scholar
  29. 29.
    Zisserman, J., Sivic, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings 9th International Conference on Computer Vision, pp. 1470–1478 (2003)Google Scholar
  30. 30.
    Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Rob. 28(2), 204–226 (2011)CrossRefGoogle Scholar
  31. 31.
    Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua, P.: View-based maps. Int. J. Rob. Res. 29(8), 941–957 (2010)CrossRefGoogle Scholar
  32. 32.
    Christensen, H.I., Folkesson, J.: Closing the loop with graphical SLAM. IEEE Trans. Rob. 23(4), 731–741 (2007)CrossRefGoogle Scholar
  33. 33.
    Johannsson, H., Kaess, M., Fallon, M., Leonard, J.J.: Temporally scalable visual SLAM using a reduced pose graph. In: RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments (2012)Google Scholar
  34. 34.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2012)Google Scholar
  35. 35.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. (T-RO) 23, 34–46 (2007)Google Scholar
  36. 36.
    Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot 28(6), 854–874 (2011)CrossRefGoogle Scholar
  37. 37.
    Mur-Artal, R., Montiel, J., Tardo, J.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  38. 38.
    Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Realtime 3D visual SLAM with a hand-held RGB-D camera. In: RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum (2011)Google Scholar
  39. 39.
    Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: Intelligent Robots and Systems (IROS) (2012)Google Scholar
  40. 40.
    Audras, C., Comport, A., Meilland, M., Rives, P.: Real-time dense appearance-based SLAM for RGB-D sensors. In: Australasian Conference on Robotics and Automation (2011)Google Scholar
  41. 41.
    Bolles, M.A., Fischler, R.C.: Random sample consensus: a paradigm for model fitting with apphcatlons to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wilbert G. Aguilar
    • 1
    • 3
    • 4
    Email author
  • Guillermo A. Rodríguez
    • 2
    • 3
  • Leandro Álvarez
    • 2
    • 3
  • Sebastián Sandoval
    • 2
    • 3
  • Fernando Quisaguano
    • 2
    • 3
  • Alex Limaico
    • 2
    • 3
  1. 1.Dep. Seguridad y DefensaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Dep. Eléctrica y ElectrónicaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  3. 3.CICTE Research CenterUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  4. 4.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations