Advertisement

Using of 3D Virtual Reality Electromagnetic Navigation for Challenging Cannulation in FEVAR Procedure

  • Roberta Piazza
  • Sara CondinoEmail author
  • Aldo Alberti
  • Davide Giannetti
  • Vincenzo Ferrari
  • Marco Gesi
  • Mauro Ferrari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)

Abstract

Virtual Reality (VR) is promising not just for the game and entertainment industry, but also for the medical and surgical fields, to develop simulation systems and navigation tools for the intra-operative assistance. Electromagnetic (EM) tracking technology is today widely proposed in the context of computer-assisted medical interventions.

In this work we preliminary evaluate whether a three-Dimensional (3D) virtual reality EM navigator could simplify a challenging endovascular procedure, the fenestrated endovascular aneurysm repair (FEVAR), facilitating the collateral arteries cannulation. This paper describes the navigation system and presents results of in-vitro trials which provide preliminary evidence to prove the potentialities of the proposed technology for the specific surgical application.

Keywords

Computer assisted system Electromagnetic navigation Endovascular navigation FEVAR Cannulation Catheterization 

Notes

Acknowledgments

The research leading to these results has been partially supported by the scientific project LASER (electromagnetic guided in-situ laser fenestration of endovascular endoprosthesis, November 2014–November 2017) funded by the Italian Ministry of Health and Regione Toscana through the call “Ricerca Finalizzata 2011–2012”.

References

  1. 1.
    McCloy, R., Stone, R.: Virtual reality in surgery. BMJ: Br. Med. J. 323, 912–915 (2001)CrossRefGoogle Scholar
  2. 2.
    Fagan, T.E., Truong, U.T., Jone, P.-N., Bracken, J., Quaife, R., Hazeem, A.A.A., Salcedo, E.E., Fonseca, B.M.: Multimodality 3-dimensional image integration for congenital cardiac catheterization. Methodist DeBakey Cardiovasc. J. 10, 68–76 (2014)CrossRefGoogle Scholar
  3. 3.
    Rossitti, S., Pfister, M.: 3D road-mapping in the endovascular treatment of cerebral aneurysms and arteriovenous malformations. Intervent. Neuroradiol. 15, 283–290 (2009)CrossRefGoogle Scholar
  4. 4.
    Pujol, S., Pecher, M., Magne, J.L., Cinquin, P.: A virtual reality based navigation system for endovascular surgery. Stud. Health Technol. Inform. 98, 310–312 (2004)Google Scholar
  5. 5.
    Sidhu, R., Weir-McCall, J., Cochennec, F., Riga, C., DiMarco, A., Bicknell, C.D.: Evaluation of an electromagnetic 3D navigation system to facilitate endovascular tasks: a feasibility study. Eur. J. Vascul. Endovasc. Surg.: Official J. Eur. Soc. Vascul. Surg. 43, 22–29 (2012)CrossRefGoogle Scholar
  6. 6.
    Cochennec, F., Riga, C., Hamady, M., Cheshire, N., Bicknell, C.: Improved catheter navigation with 3D electromagnetic guidance. J. Endovasc. Therapy: Official J. Int. Soc. Endovasc. Spec. 20, 39–47 (2013)CrossRefGoogle Scholar
  7. 7.
    Condino, S., Ferrari, V., Freschi, C., Alberti, A., Berchiolli, R., Mosca, F., Ferrari, M.: Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires. Int. J. Med. Robot. 8(3), 300–310 (2012)CrossRefGoogle Scholar
  8. 8.
    Condino, S., et al.: Electromagnetic guided in-situ laser fenestration of endovascular stent-graft: endovascular tools sensorization strategy and preliminary laser testing. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 72–83. Springer, Cham (2016). doi: 10.1007/978-3-319-43775-0_7 CrossRefGoogle Scholar
  9. 9.
    Rodd, C.D., Desigan, S., Cheshire, N.J., Jenkins, M.P., Hamady, M.: The suitability of thoraco-abdominal aortic aneurysms for branched or fenestrated stent grafts – and the development of a new scoring method to aid case assessment. Eur. J. Vascul. Endovasc. 41, 175–185 (2011)CrossRefGoogle Scholar
  10. 10.
    Shahverdyan, R., Gray, D., Gawenda, M., Brunkwall, J.: Single centre results of total endovascular repair of complex aortic aneurysms with custom made anaconda fenestrated stent grafts. Eur. J. Vascul. Endovasc. 52, 500–508 (2016)CrossRefGoogle Scholar
  11. 11.
    Megali, G., Ferrari, V., Freschi, C., Morabito, B., Turini, G., Troia, E., Cappelli, C., Pietrabissa, A., Tonet, O., Cuschieri, A., Dario, P., Mosca, F.: EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery. Int. J. Med. Robot. Comp. 4, 242–251 (2008)CrossRefGoogle Scholar
  12. 12.
    Condino, S., Calabro, E.M., Alberti, A., Parrini, S., Cioni, R., Berchiolli, R.N., Gesi, M., Ferrari, V., Ferrari, M.: Simultaneous tracking of catheters and guidewires: comparison to standard fluoroscopic guidance for arterial cannulation. Eur. J. Vascul. Endovasc. 47, 53–60 (2014)CrossRefGoogle Scholar
  13. 13.
    Sinceri, S., Carbone, M., Marconi, M., Moglia, A., Ferrari, M., Ferrari, V.: Basic endovascular skills trainer: a surgical simulator for the training of novice practitioners of endovascular procedures. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 5102–5105 (2015)Google Scholar
  14. 14.
    Quiñones-Baldrich, W.J., Holden, A., Mertens, R., Thompson, M.M., Sawchuk, A.P., Becquemin, J.-P., Eagleton, M., Clair, D.G.: Prospective, multicenter experience with the ventana fenestrated system for juxtarenal and pararenal aortic aneurysm endovascular repair. J. Vascul. Surg. 58, 1–9 (2013)CrossRefGoogle Scholar
  15. 15.
    Turini, G., Condino, S., Postorino, M., Ferrari, V., Ferrari, M.: Improving endovascular intraoperative navigation with real-time skeleton-based deformation of virtual vascular structures. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9769, pp. 82–91. Springer, Cham (2016). doi: 10.1007/978-3-319-40651-0_7 Google Scholar
  16. 16.
    Parrini, S., Zhang, L., Condino, S., Ferrari, V., Caramella, D., Ferrari, M.: Automatic carotid centerline extraction from three-dimensional ultrasound doppler images. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 5089–5092 (2014)Google Scholar
  17. 17.
    Zhang, L., Parrini, S., Freschi, C., Ferrari, V., Condino, S., Ferrari, M., Caramella, D.: 3D ultrasound centerline tracking of abdominal vessels for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 9(1), 127–135 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roberta Piazza
    • 1
    • 2
    • 3
  • Sara Condino
    • 3
    Email author
  • Aldo Alberti
    • 4
  • Davide Giannetti
    • 2
  • Vincenzo Ferrari
    • 2
    • 3
  • Marco Gesi
    • 4
  • Mauro Ferrari
    • 1
    • 3
  1. 1.Vascular Surgery UnitCisanello University Hospital, AOUPPisaItaly
  2. 2.Information Engineering DepartmentUniversity of PisaPisaItaly
  3. 3.EndoCAS, Department of Translational Research and of New Surgical and Medical TechnologiesUniversity of PisaPisaItaly
  4. 4.Department of Translational Research and of New Surgical and Medical TechnologiesUniversity of PisaPisaItaly

Personalised recommendations