Assistance System for Rehabilitation and Valuation of Motor Skills

  • Washington X. Quevedo
  • Jessica S. Ortiz
  • Paola M. Velasco
  • Jorge S. Sánchez
  • Marcelo Álvarez V.
  • David Rivas
  • Víctor H. AndaluzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)


This article proposes a non-invasive system to stimulate the rehabilitation of motor skills, both of the upper limbs and lower limbs. The system contemplates two ambiances for human-computer interaction, depending on the type of motor deficiency that the patient possesses, i.e., for patients with chronic injuries, an augmented reality environment is considered, while virtual reality environments are used in people with minor injuries. In the cases mentioned, the interface allows visualizing both the routine of movements performed by the patient and the actual movement executed by him. This information is relevant for the purpose of (i) stimulating the patient during the execution of rehabilitation, and (ii) evaluation of the movements made so that the therapist can diagnose the progress of the patient’s rehabilitation process. The visual environment developed for this type of rehabilitation provides a systematic application in which the user first analyzes and generates the necessary movements in order to complete the defined task. The results show the efficiency of the system generated by the human-computer interaction oriented to the development of motor skills.


Rehabilitación Realidad virtual Kinect Motricidad motora Unity3d 


  1. 1.
    Organización Mundial de la Salud: Informe Mundial sobre la Discapacidad (2011)Google Scholar
  2. 2.
    Silver, B.: Virtual reality versus reality in post-stroke rehabilitation. Lancet Neurol. 15(10), 996 (2016)CrossRefGoogle Scholar
  3. 3.
    O’Sullivan, S., Schmitz, T., Fulj, G.: Physical Rehabilitation, USA, pp. 333, 443 (2014)Google Scholar
  4. 4.
    Chambers, A., Smith, P., Sim, M., LaMontagne, A.: Comparison of Two Measures of Work Functioning in a Population of Claimants with Physical and Pshychological Injuries. Springer Science+Business Media, Dordrecht (2016)Google Scholar
  5. 5.
    Chang, Y.-J., Chen, S.-F., Huang, J.-D.: A kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6), 2566–2570 (2011). Cited 332 timesCrossRefGoogle Scholar
  6. 6.
    Lange, B., Chang, C.Y., Suma, E., Newman, B., Rizzo, A.S., Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the microsoft kinect sensor. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biolog Society, Boston, MA, pp. 1831–1834 (2011)Google Scholar
  7. 7.
    Vela Nuñez, M., Avizzano, C.A., Carrozzino, M., Frisoli, A., Bergamasco, M.: Multi-modal virtual reality system for accessible in-home post-stroke arm rehabilitation. In: 2013 IEEE ROMAN, Gyeongju, pp. 780–785 (2013)Google Scholar
  8. 8.
    Hoei, T., Kawahira, K., Fukuda, H., Sihgenobu, K., Shimodozono, M., Ogura, T.: Use of an arm weight-bearing combined with upper-limb reaching apparatus to facilitate motor paralysis recovery in an incomplete spinal cord injury patient: a single case report. J. Phys. Therary Sci. 29, 176–180 (2017)CrossRefGoogle Scholar
  9. 9.
    Bejarano, N., Maggioni, S., Rijcke, L., Cifuentes, C., Reinkensmeyer, D.: Robot-Assisted Rehabilitation Therapy Recovery Mechanisms and Their Implications for Machine Design, Emerging Therapies in Neurorehabilitation II, pp. 197–223 (2015)Google Scholar
  10. 10.
    Vos-Vromans, D., Smeets, R., Hujinen, I., Koke, A., Hitters, W., et al.: Multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: a randomized controlled trial. J. Intern. Med. 279, 268–282 (2016)CrossRefGoogle Scholar
  11. 11.
    Tao, G., Archambault, P.S., Levin, M.F.: Evaluation of kinect skeletal tracking in a virtual reality rehabilitation system for upper limb hemiparesis. In: International Conference on Virtual Rehabilitation (ICVR), pp. 164–165 (2013)Google Scholar
  12. 12.
    Andaluz, V., Salazar, P., Silva, S., Escudero, V., Bustamante, D.: Rehabilitation of upper limb with force feedback. In: 2016 IEEE International Conference on Automatica (ICA-ACCA) (2016)Google Scholar
  13. 13.
    Andaluz, V.H., et al.: Virtual reality integration with force feedback in upper limb rehabilitation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 259–268. Springer, Cham (2016). doi: 10.1007/978-3-319-50832-0_25 CrossRefGoogle Scholar
  14. 14.
    Andaluz, V.H., Chicaiza, F.A., Gallardo, C., Quevedo, W.X., Varela, J., Sánchez, J.S., Arteaga, O.: Unity3D-MatLab simulator in real time for robotics applications. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. LNCS, vol. 9768, pp. 246–263. Springer, Cham (2016). doi: 10.1007/978-3-319-40621-3_19 Google Scholar
  15. 15.
    Davis, M., Can, D., Pindrink, J., et al: Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality, pp. 103–111. Science Direct (2016)Google Scholar
  16. 16.
    Huang, Y., Backman, K., Backman, S., Chang, L.: Exploring the implications of virtual reality technology in tourism marketing: an integrated research framework. Int. J. Tour. Res. 18, 116–128 (2016)CrossRefGoogle Scholar
  17. 17.
    Pallavicini, F., Argenton, L., Toniazzi, N., Aceti, L., Mantovani, F.: Virtual reality applications for stress management training in the militry. Aerosp. Med. Hum. Perform. 87, 1021–1030 (2016)CrossRefGoogle Scholar
  18. 18.
    Rothbaum, B.O., Price, M., Jovanovic, T., Norrholm, S.D., Gerardi, M., Dunlop, B., Ressler, K.J.: A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiatry 171, 640–648 (2014)CrossRefGoogle Scholar
  19. 19.
    Schreuder, H.W., Persson, J.E., Wolswijk, R.G., Ihse, I., Schijven, M.P., Verheijen, R.H.: Validation of a novel virtual reality simulator for robotic surgery. Sci. World J. 2014, 1–10 (2014). ID:507076CrossRefGoogle Scholar
  20. 20.
    Padilla-Castaneda, M.A., Sotgiu, E., Frisoli, A., Bergamasco, M., Orsini, P., Martiradonna, A., Laddaga, C.: A virtual reality system for robotic-assisted orthopedic rehabilitation of forearm and elbow fractures. In: International Conference on Intelligent Robots and Systems, pp. 1506–1511 (2013)Google Scholar
  21. 21.
    Menezes, R.C., Batista, P.K.A., Ramos, A.Q., Medeiros, A.F.C.: Development of a complete game based system for physical therapy with kinect. In: Serious Games and Applications for Health (SeGAH), pp. 1–6 (2014)Google Scholar
  22. 22.
    Faroque, S., Horan, B., Adam, H., Pangestu, M., Thomas, S.: Haptic virtual reality training environment for micro-robotic cell injection. In: Kajimoto, H., Ando, H., Kyung, K.-U. (eds.) Haptic Interaction, pp. 245–249. Springer, Japan (2015)CrossRefGoogle Scholar
  23. 23.
    Rincon, A., Yamasaki, H., Shimoda, S.: Design of a video game for rehabilitation using motion capture, EMG analysis and virtual reality. In: International Conference on Electronic, Communications and Computers, pp. 198–204 (2016)Google Scholar
  24. 24.
    Levin, M.F., Magdalon, E.C., Michaelsen, S.M., Quevedo, A.A.: Quality of grasping and the role of haptics in a 3-D immersive virtual reality environment in individuals with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 1047–1055 (2015)CrossRefGoogle Scholar
  25. 25.
    Lipovsky, R., Ferreira, H.: Hand therapist: a rehabilitation approach based on wearable technology and video gaming. In: 4th Portuguese Meeing on Bioengineering, Portugal (2015)Google Scholar
  26. 26.
    Yoshida, H., Honda, T., Lee, J., Yano, S., Kakei, S., Kondo, T.: Development of a system for quantitative evaluation of motor function using Kinect v2 sensor. In: Micro-NanoMechatronics and Human Science (MHS), pp. 1–6 (2016)Google Scholar
  27. 27.
    Harshfield, N., Chang, D., Rammohan: A Unity 3D framework for algorithm animation. In: Computer Games: Al, Animation, Mobile, Multimedia, Education and Serious Games (CGAMES), USA (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Washington X. Quevedo
    • 1
  • Jessica S. Ortiz
    • 1
  • Paola M. Velasco
    • 1
  • Jorge S. Sánchez
    • 1
  • Marcelo Álvarez V.
    • 1
  • David Rivas
    • 1
  • Víctor H. Andaluz
    • 1
    Email author
  1. 1.Universidad de las Fuerzas Armadas, ESPESangolquíEcuador

Personalised recommendations