Skip to main content

RRT* GL Based Path Planning for Virtual Aerial Navigation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10324))

Abstract

In this paper, we describe a path planning system for virtual navigation based on a RRT combination of RRT* Goal and Limit. The propose system includes a point cloud obtained from the virtual workspace with a RGB-D sensor, an identification module for interest regions and obstacles of the environment, and a collision-free path planner based on Rapidly-exploring Random Trees (RRT) for a safe and optimal virtual navigation of UAVs in 3D spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)

    Google Scholar 

  2. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  3. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

  4. Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)

    Google Scholar 

  5. Koren, Y.: Robotics for Engineers (1998)

    Google Scholar 

  6. Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)

    Google Scholar 

  7. Vasishth, O., Gigras, Y.: Path planning problem. Int. J. Comput. Appl. 104(2) (2014)

    Google Scholar 

  8. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  9. Henry, P., Krainin, P., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER) (2010)

    Google Scholar 

  10. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)

    Google Scholar 

  11. Gutmann, J.-S., Fukuchi, M., Fujita, M.: 3D perception and environment map generation for humanoid robot navigation. Int. J. Robot. Res. 27 (2008)

    Google Scholar 

  12. Oliver, A., Kang, S., Wunsche, B., MacDonald, B.: Using the kinect as a navigation sensor for mobile robotics. In: Conference on Image and Vision Computing New Zealand (2012)

    Google Scholar 

  13. Benavidez, P., Jamshidi, M.: Mobile robot navigation and target tracking system. In: The 6th International Conference on System of Systems Engineering, Albuquerque (2011)

    Google Scholar 

  14. Rao, D., Le, Q., Phoka, T., Quigley, M., Sudsang, A., Ng, A.Y.: Grasping novel objects with depth segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei (2010)

    Google Scholar 

  15. Ali Shah, S.A., Bennamoun, M., Boussaid, F.: A novel algorithm for efficient depth segmentation using low resolution (kinect) images. In: IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland (2015)

    Google Scholar 

  16. Liu, J., Yang, J., Liu, H., Tian, X., Gao, M.: An improved ant colony algorithm for robot path planning. Soft. Comput. 21, 1–11 (2016)

    Google Scholar 

  17. Glasius, R., Komoda, A., Gielen, S.C.A.M.: Neural network dynamics for path planning and obstacle avoidance. Neural Netw. 8(1), 125–133 (2000)

    Article  MATH  Google Scholar 

  18. Xin, D., Hua-hua, C., Wei-kang, G.: Neural network and genetic algorithm based global path planning in a static environment. J. Zhejiang Univ. Sci. A 6(6), 549–554 (2005-2006)

    Google Scholar 

  19. Seraji, H., Howard, A.: Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans. Robot. Autom. 18(3), 308–321 (2002)

    Article  Google Scholar 

  20. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)

    Google Scholar 

  21. Devaurs, D., Siméon, T., Cortés, J.: Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Akin, H.L., Amato, N.M., Isler, V., Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 143–159. Springer, Cham (2015). doi:10.1007/978-3-319-16595-0_9

    Google Scholar 

  22. Gammell, J.D., Srinivasa, S., Barfoot, T.: Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (2014)

    Google Scholar 

  23. Hatledal, L.I.: Kinect v2 SDK 2.0 – Colored Point Clouds, 15 August 2015. http://laht.info/kinect-v2-colored-point-clouds/

  24. Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M. Siegwart, R.: Kinect v2 for mobile robot navigation: evaluation and modeling. In: 2015 International Conference on Advanced Robotics (ICAR), Istanbul (2015)

    Google Scholar 

  25. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  26. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. (2010)

    Google Scholar 

  27. Lachat, E., Hélene, M., Tania, L., Pierre, G.: Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a potential use for close-range 3D modeling. Remote Sens. 7(10) (2015)

    Google Scholar 

  28. Pagliari, D., Pinto, L.: Calibration of kinect for xbox one and comparison between the two generations of microsoft sensors. Sensors 15(11) (2015)

    Google Scholar 

  29. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)

    Article  Google Scholar 

  30. Sreedhar, K., Panlal, B.: Enhancement of images using morphological transformations. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 4(1) (2012)

    Google Scholar 

  31. Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control, Barcelona, Spain (2012)

    Google Scholar 

  32. Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2012)

    Google Scholar 

  33. Navon, E., Miller, O., Averbuch, A.: Color image segmentation based on adaptive local thresholds. Image Vis. Comput. 23, 69–85 (2005)

    Article  Google Scholar 

  34. Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)

    Google Scholar 

  35. Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  36. The MathWorks, Inc.: Pcregrigid Documentation (2015). http://www.mathworks.com/help/vision/ref/pcregrigid.html. Accessed 24 Feb 2016

  37. Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in MATLAB. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aguilar, W.G., Morales, S., Ruiz, H., Abad, V. (2017). RRT* GL Based Path Planning for Virtual Aerial Navigation. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10324. Springer, Cham. https://doi.org/10.1007/978-3-319-60922-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60922-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60921-8

  • Online ISBN: 978-3-319-60922-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics