Skip to main content

Encoding Gesture-Oriented Human Behaviour for the Development and Control of an Adaptive Building Skin

  • Chapter
  • First Online:
Computational Morphologies

Abstract

This paper discusses soft structural transformation strategies and responsive motional activation control methods for the development of an interactive building skin, responsible for regulating inner light conditions, with particular feedback from human position and stature. Inspired from the latest employment of smart mobile devices in building industry as an on/off wireless control switchboard, the present project demonstrates an alternative, gesture-based activation methodology towards a more natural and approachable way of controlling architectural environments. Elastically deformable planar elements of low thickness, in the basis of bending-active principles, have been chosen for the composition of a ‘soft’, modular adaptive building skin that enables flexible kinetic transformation with enhanced diverse geometrical conversion. Alongside the question of responsive motional control strategies, the search for a practical design setup is investigated aiming to establish a computational-oriented methodology that integrates information from both direct physical sensory data and indirect computational programming and organization of the input information. This is discussed through the case studies, where the physical performance of individuals is examined to generate input parameters responsible for the appropriate gesture activation of the digitally simulated responsive skin. User’s physical actions are recorded via the synergy of multiple sensors and classified into two main categories. Computation of both data resulted on an enriched user motion decoding, and therefore the encoding of specific structural reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Control of cognition: Cognition has to do with how mobile devices (operating system) understand and act in respect to user’s usage or preferences. It is defined as a set of processes and data examination that are purposely performed to activate a more interactive user-phone experience. Cognitive control is actually a mechanism of how digital platforms learn, recognise user’s actions, remember choices or particular data and effectively suggest options or even make specific tasks automated. This step is developed over time according to user’s activity and can manage both short- and long-term control [13].

  2. 2.

    Sensing artefacts are sensing devices made by human being. These devices vary in technological manufacturing and nature of sensing. Many technological products are composed from sensing devices to provide users with valuable information regarding their status, operation or even failure. In most cases they work as protecting agents to prevent failure or to activate a special feature to avoid such incident to happen [14].

  3. 3.

    Grasshopper is a parametric plug-in for Rhinoceros 3D. It allows custom programming for existing commands of Rhino as well as custom definition of commands using programming languages. Several sub-plugins have been formulated by developers which include pre-set components to enable communication between other official applications or hardware components such as sensing devices (Kinect camera etc.).

    Information about Grasshopper at: http://www.grasshopper3d.com.

    Grasshopper plug-ins at: http://www.food4rhino.com/?etx.

References

  1. Schnädelbach, H. (2010). Adaptive architecture: A conceptual framework. In Media City, Weimar.

    Google Scholar 

  2. Lienhard, J., Lpermann, H., Gengnagel, C., & Knippers, J. (2013). Active bending, a review on structures where bending is used as a self-formation process. In Space structures, multi science.

    Google Scholar 

  3. Reef Installation. Retrieved from December 22, 2014http://www.archdaily.com/29174/reef-an-installation-at-storefront-for-art-and-architecture

  4. Knippers, J., Scheible, F., Oppe, M., & Jungjohann, H. (2012). Bio-inspired kinetic GFRP-façade for the Thematic Pavilion of the EXPO 2012 in Yeosu. In I SS-PCS-symposium, Seoul.

    Google Scholar 

  5. Softhouse Residence in Germany. Retrieved from December 22, 2014. http://arcintex.hb.se/uploads/images/pdf/Soft-House-Prospectus-2014.pdf

  6. Dubberly, H., Pangaro, P., & Haque, U. (2009). On modelling what is interaction? Are there different types? 69–75.

    Google Scholar 

  7. Fox, M., & Polancic, A. (2012). Conventions of control: Catalogue of gestures for remotely interacting with dynamic architectural space. In Association for computer aided design in architecture, San Francisco.

    Google Scholar 

  8. Kemp, R. M. (2008). Interactive interfaces in architecture: The new spatial integration of information, gesture and cognitive control. In ACADIA 08: Silicon and skin-biological processes and computation, Chiang Mai.

    Google Scholar 

  9. Shahriyar, R., et al. (2008). Remote controlling of home appliances using mobile telephony. In Smart Home, USA.

    Google Scholar 

  10. Kontovourkis, O., Alexandrou, K., Vassiliades, C., Frangogiannopoulos, S., Dimitriou, N., & Petrou, C. (2015). Adaptive building skin development and wireless gesture-oriented control [PowerPoint slides]. Presented at the 3rd regionsal international workshop ‘computational morphologies’ at Polytechnic University of Milan.

    Google Scholar 

  11. Kontovourkis, O. (2013). Physical data computing in adaptive design process. In Proceeding of international conference of adaptation and movement in architecture, Toronto, Canada.

    Google Scholar 

  12. Larke, J. (2011). Energy simulation in building design (pp. 266–268). London: Routledge.

    Google Scholar 

  13. Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human–computer interaction. Human-Computer Interaction, 12, 391–438.

    Article  Google Scholar 

  14. Artefacts: Oxford Dictionary: http://www.oed.com/view/Entry/11133?redirectedFrom=artefact

Download references

Acknowledgements

The current paper presents an extended work that includes further research developments of a project initiated within the framework of the postgraduate course ARH-522—Advanced Computer-Aided Design Topics taught in the Department of Architecture at the University of Cyprus during the Fall semester of 2014. The initial investigation has been presented during the 3rd eCAADe Regional International Workshop ‘Computational Morphologies’ that was held in Polytechnic University of Milan on 14–15 May 2015 under the title ‘Adaptive building skin development and wireless gesture-oriented control’ and was authored by Odysseas Kontovourkis, Kristis Alexandrou, Constantinos Vassiliades, Stavros Frangogiannopoulos, Neofytos Dimitriou, and Christina Petrou [10]. We would like to sincerely thank all contributors participating in the previous part of investigation of the current extended work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odysseas Kontovourkis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kontovourkis, O., Alexandrou, K., Frangogiannopoulos, S. (2018). Encoding Gesture-Oriented Human Behaviour for the Development and Control of an Adaptive Building Skin. In: Rossi, M., Buratti, G. (eds) Computational Morphologies. Springer, Cham. https://doi.org/10.1007/978-3-319-60919-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60919-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60918-8

  • Online ISBN: 978-3-319-60919-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics