Skip to main content

Path Following for Mobile Manipulators

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

This paper presents a framework of path following via set stabilization for mobile manipulator systems. The mobile manipulator is modelled as a single redundant dynamic system. The mobile base considered belongs to a large class of wheeled ground vehicles, including those with nonholonomic constraints. Kinematic redundancies are resolved by designing a controller that solves a suitably defined constrained quadratic optimization problem, which can be easily tuned by the designer to achieve various desired poses. By employing partial feedback linearization, the proposed path following controller has a clear physical meaning. The desired path to be followed is a spline in the output space of the system. The controller simultaneously controls the manipulator and mobile base. The result is a unified path following controller without any trajectory planning performed on the mobile base. The approach is experimentally verified on a 4-degree-of-freedom (4-DOF) manipulator mounted on a differential drive mobile platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results of this paper do not rely on the assumption that the state space be Euclidean. One could replace \(\mathbb R^N\) by a smooth Riemannian manifold. Nonetheless, we assume \(x\in \mathbb R^N\) to avoid unnecessarily cumbersome notation.

  2. 2.

    Invariance: if for some time \(t=0\) the state x(0) is appropriately initialized with \(y=H(x(0)) \in \mathscr {P}\), then \((\forall t \ge 0) \; H(x(t)) \in \mathscr {P}\). Attractiveness: for initial conditions x(0) such that the output H(x(0)) is in a neighbourhood of the desired path \(\mathscr {P}\), \(H(x(t)) \rightarrow \mathscr {P}\) as \(t \rightarrow \infty \).

References

  1. Aguiar, A., Hespanha, J., Kokotovic, P.: Path-following for nonminimum phase systems removes performance limitations. IEEE Trans. Autom. Control 50(2), 234–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhtar, A., Nielsen, C., Waslander, S.: Path following using dynamic transverse feedback linearization for car-like robots. IEEE Trans. Robot. 31(2), 269–279 (2015)

    Article  Google Scholar 

  3. Cameron, J., MacKenzie, D., Ward, K., Arkin, R., Book, W.: Reactive control for mobile manipulation. In: IEEE ICRA, vol. 3, pp. 228–235 (1993)

    Google Scholar 

  4. Chung, J.H., Velinsky, S.: Modeling and control of a mobile manipulator. Robotica 16(06), 607–613 (1998)

    Article  Google Scholar 

  5. De Wit, C.C., Bastin, G., Siciliano, B.: Theory of robot control. Springer, New York (1996)

    Book  MATH  Google Scholar 

  6. Erkorkmaz, K., Altintas, Y.: High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. Int. J. Mach. Tools Manuf. 41(9), 1323–1345 (2001)

    Article  Google Scholar 

  7. Gill, R.: Robust spline path following for redundant mechanical systems. Master’s thesis, University of Waterloo (2015)

    Google Scholar 

  8. Gill, R., D Kulić, D., Nielsen, C.: Robust path following for robot manipulators. In: IEEE IROS, pp. 3412–3418 (2013)

    Google Scholar 

  9. Gill, R., Kulic, D., Nielsen, C.: Spline path following for redundant mechanical systems. IEEE Trans. Robot. 31(6), 1378–1392 (2015)

    Article  Google Scholar 

  10. Hauser, J., Hindman, R.: Maneuver regulation from trajectory tracking: feedback linearizable systems. In: Proceedings of IFAC Symposium Nonlinear Control Systems Design, pp. 595–600 (1995)

    Google Scholar 

  11. Hladio, A., Nielsen, C., Wang, D.: Path following for a class of mechanical systems. IEEE Trans. Control Syst. Technol. 21(6), 2380–2390 (2013)

    Article  Google Scholar 

  12. Inoue, F., Muralami, T., Ihnishi, K.: A motion control of mobile manipulator with external force. IEEE/ASME Trans. Mech. 6(2), 137–142 (2001)

    Article  Google Scholar 

  13. Isidori, A.: Nonlinear Control Systems, \(3\)rd edn. Springer, New York (1995)

    Google Scholar 

  14. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  15. Khatib, O.: Mobile manipulation: the robotic assistant. Robot. Auton. Syst. 26(23), 175–183 (1999)

    Article  Google Scholar 

  16. Kreyszig, E.: Differential Geometry. Dover Publications, New York (1991)

    MATH  Google Scholar 

  17. Lapierre, L., Soetanto, D.: Nonlinear path-following control of an auv. Ocean Eng. 34(11), 1734–1744 (2007)

    Article  Google Scholar 

  18. Nagatani, K., Yuta, S.: Designing strategy and implementation of mobile manipulator control system for opening door. In: IEEE ICRA, vol. 3, pp. 2828–2834 (1996)

    Google Scholar 

  19. Nielsen, C., Maggiore, M.: Output stabilization and maneuver regulation: a geometric approach. Syst. Control Lett. 55(5), 418–427 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pennock, G., Kassner, D.: The workspace of a general geometry planar three-degree-of-freedom platform-type manipulator. J. Mech. Des. 115(2), 269–276 (1993)

    Article  Google Scholar 

  21. Peterson, L., Austin, D., Kragic, D.: High-level control of a mobile manipulator for door opening. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2333–2338 (2000). doi:10.1109/IROS.2000.895316

  22. Seraji, H.: A unified approach to motion control of mobile manipulators. Int. J. Robot. Res. 17(2), 107–118 (1998)

    Article  Google Scholar 

  23. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  24. Xu, Y., Brown, J.H.B., Friedman, M., Kanade, T.: Control system of the self-mobile space manipulator. IEEE Trans. Control Syst. Technol. 2(3), 207–219 (1994)

    Article  Google Scholar 

  25. Yamamoto, Y., Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. In: Proceedings of IEEE Conference on Decision and Control, pp. 2643–2648 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gill, R., Kulić, D., Nielsen, C. (2018). Path Following for Mobile Manipulators. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics