Skip to main content

Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

Probabilistic sampling-based algorithms, such as the probabilistic roadmap (PRM) and the rapidly-exploring random tree (RRT) algorithms, represent one of the most successful approaches to robotic motion planning, due to their strong theoretical properties (in terms of probabilistic completeness or even asymptotic optimality) and remarkable practical performance. Such algorithms are probabilistic in that they compute a path by connecting independent and identically distributed (i.i.d.) random points in the configuration space. Their randomization aspect, however, makes several tasks challenging, including certification for safety-critical applications and use of offline computation to improve real-time execution. Hence, an important open question is whether similar (or better) theoretical guarantees and practical performance could be obtained by considering deterministic, as opposed to random sampling sequences. The objective of this paper is to provide a rigorous answer to this question. The focus is on the PRM algorithm—our results, however, generalize to other batch-processing algorithms such as \(\text {FMT}^*\). Specifically, we first show that PRM, for a certain selection of tuning parameters and deterministic low-dispersion sampling sequences, is deterministically asymptotically optimal, i.e., it returns a path whose cost converges deterministically to the optimal one as the number of points goes to infinity. Second, we characterize the convergence rate, and we find that the factor of sub-optimality can be very explicitly upper-bounded in terms of the \(\ell _2\)-dispersion of the sampling sequence and the connection radius of PRM. Third, we show that an asymptotically optimal version of PRM exists with computational and space complexity arbitrarily close to O(n) (the theoretical lower bound), where n is the number of points in the sequence. This is in stark contrast to the \(O(n\, \log n)\) complexity results for existing asymptotically-optimal probabilistic planners. Finally, through numerical experiments, we show that planning with deterministic low-dispersion sampling generally provides superior performance in terms of path cost and success rate.

This work was supported by NASA under the Space Technology Research Grants Program, Grant NNX12AQ43G. Lucas Janson was partially supported by NIH training grant T32GM096982. Brian Ichter was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(f, g:{\mathbb {N}}\rightarrow {\mathbb {R}}\), we say \(f\in O(g)\) if there exists \(n_0\in {\mathbb {N}}\) and \(k\in {\mathbb {R}}_{>0}\) such that \(|f(n)|\le k\, |g(n)|\) for all \(n\ge n_0\). We say \(f\in \varOmega (g)\) if there exists \(n_0\in {\mathbb {N}}\) and \(k\in {\mathbb {R}}_{>0}\) such that \(|f(n)|\ge k\, |g(n)|\) for all \(n\ge n_0\). Finally, we say \(f\in \omega (g)\) if \(\lim _{n\rightarrow \infty } \, f(n)/g(n) = \infty \).

References

  1. Alterovitz, R., Patil, S., Derbakova, A.: Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3706–3712 (2011)

    Google Scholar 

  2. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for optimal motion planning. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2421–2428. Karlsruhe, Germany (2013). doi:10.1109/ICRA.2013.6630906. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6630906

  3. Barraquand, J., Kavraki, L., Motwani, R., Latombe, J.-C., Li, T.-Y., Raghavan, P.: A random sampling scheme for path planning. Int. J. Robot. Res. 16(6), 759–774 (2000). doi:10.1177/027836499701600604. http://ijr.sagepub.com/content/16/6/759.short

  4. Bohlin, R., Kavraki, L.: Path planning using lazy PRM. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 521–528 (2000)

    Google Scholar 

  5. Branicky, M.S., LaValle, S.M., Olson, K., Yang, L.: Quasi-randomized path planning. In: Proceedings of the IEEE Conference on Robotics and Automation, vol. 2, pp. 1481–1487 (2001)

    Google Scholar 

  6. Deheuvels, P.: Strong bounds for multidimensional spacings. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 64(4), 411–424 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobson, A., Moustakides, G., Bekris, K.E.: Geometric probability results for bounding path quality in sampling-based roadmaps after finite computation. In: Proceedings of the IEEE Conference on Robotics and Automation (2015)

    Google Scholar 

  8. Halton, J.H.: On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals. Numerische Mathematik 2(1), 84–90 (1960). doi:10.1007/BF01386213. http://link.springer.com/article/10.1007%2FBF01386213?LI=true

  9. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comput. Geom. Appl. 9(4), 495–512 (1999). doi:10.1142/S0218195999000285. http://www.worldscientific.com/doi/abs/10.1142/S0218195999000285

  10. Hsu, D., Latombe, J.-C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Robot. Res. 25(7), 627–643 (2006)

    Article  MATH  Google Scholar 

  11. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. Int. J. Robot. Res. 34(7), 883–921 (2015). doi:10.1177/0278364915577958

  12. Karaman, Sertac, Frazzoli, Emilio: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011). doi:10.1177/0278364911406761

    Article  MATH  Google Scholar 

  13. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). doi:10.1109/70.508439

    Article  Google Scholar 

  14. Lavalle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001). doi:10.1177/02783640122067453. http://ijr.sagepub.com/content/20/5/378.short

  16. LaValle, S.M., Branicky, M.S., Lindemann, S.R.: On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 673–692 (2004)

    Article  Google Scholar 

  17. Lindemann, S.R., Yershova, A., LaValle, S.M.: Incremental grid sampling strategies in robotics. In: Workshop on Algorithmic Foundations of Robotics, pp. 313–328 (2005)

    Google Scholar 

  18. Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial & Applied Mathematics, vol. 63 (1992)

    Google Scholar 

  19. Orlin, J.B., Madduri, K., Subramani, K., Williamson, M.: A faster algorithm for the single source shortest path problem with few distinct positive lengths. J. Discret. Algorithms 8(2), 189–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Phillips, J.M., Bedrossian, N., Kavraki, L.E.: Guided expansive spaces trees: a search strategy for motion- and cost-constrained state spaces. In: Proceedings of the IEEE Conference on Robotics and Automation, vol. 4, pp. 3968–3973. New Orleans, LA (2004). doi:10.1109/ROBOT.2004.1308890. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1308890

  21. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  22. Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling-based roadmap of trees for parallel motion planning. IEEE Trans. Robot. 21(4), 597–608 (2005)

    Article  Google Scholar 

  23. Stentz, A.: Optimal and efficient path planning for unknown and dynamic environments. Int. J. Robot. Autom. 10(3), 89–100 (1995)

    Google Scholar 

  24. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012). doi:10.1109/MRA.2012.2205651. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6377468

  25. Sukharev, A.G.: Optimal strategies of the search for an extremum. USSR Comput. Math. Math. Phys. 11(4), 119–137 (1971). doi:10.1016/0041-5553(71)90008-5. http://www.sciencedirect.com/science/article/pii/0041555371900085

  26. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    Google Scholar 

  27. Yershova, A., LaValle, S.M.: Deterministic sampling methods for spheres and SO(3). In: Proceedings of the IEEE Conference on Robotics and Automation, vol. 4, pp. 3974–3980 (2004)

    Google Scholar 

  28. Yershova, A., Jain, S., Lavalle, S.M., Mitchell, J.C.: Generating uniform incremental grids on SO(3) using the Hopf fibration. Int. J. Robot. Res. 29(7), 801–812 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Janson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Janson, L., Ichter, B., Pavone, M. (2018). Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics