Skip to main content

Relative Topometric Localization in Globally Inconsistent Maps

  • Chapter
  • First Online:
Book cover Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

Mobile robot localization is a mature field that over the years has demonstrated its effectiveness and robustness. The majority of the approaches, however, rely on a globally consistent map, and localize on it in an absolute coordinate frame. This global consistency cannot be guaranteed when the map is estimated by the robot itself, and an error in the map will likely result in the failure of the localization subsystem. In this paper we introduce a novel paradigm for localization, namely relative topometric localization, by which we forgo the need for a globally consistent map. We adopt a graph-based representation of the environment, and estimate both the topological location on the graph and the relative metrical position with respect to it. We extensively evaluated our approach and tested it against Monte Carlo localization on both simulated and real data. The results show significant improvements in scenarios where there is no globally consistent map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this is equivalent to the more traditional formulation with control inputs.

References

  1. Agarwal, P., Tipaldi, G., Spinello, L., Stachniss, C., Burgard, W.: Robust map optimization using dynamic covariance scaling. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  2. Andrew Howard, G.S.S., Matarić, M.J.: Multi-robot mapping using manifold representations. Proc. IEEE Special Issue Multi-robot Syst. 94(9), 1360–1369 (2006)

    Google Scholar 

  3. Badino, H., Huber, D., Kanade, T.: Real-time topometric localization. In: Proceedings of the IEEE International Conferance on Robotics and Automation (2012)

    Google Scholar 

  4. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, New York (2004)

    Google Scholar 

  5. Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace Electron. Syst. Mag. 19(1), 5–18 (2004)

    Article  Google Scholar 

  6. Blanco, J.L., González-Jiménez, J., Fernandez-Madrigal, J.A.: Sparser relative bundle adjustment (SRBA): constant-time maintenance and local optimization of arbitrarily large maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  7. Censi, A.: An accurate closed-form estimate of ICP’s covariance. In: Proceedings of the IEEE International Conference on Robotics and Automation (2007)

    Google Scholar 

  8. Censi, A.: An ICP variant using a point-to-line metric. In: Proceedings of the IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  9. Churchill, W., Newman, P.: Practice makes perfect? managing and leveraging visual experiences for lifelong navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

  10. Dayoub, F., Morris, T., Upcroft, B., Corke, P.: Vision-only autonomous navigation using topometric maps. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  11. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (1999)

    Google Scholar 

  12. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11, 391–427 (1999)

    MATH  Google Scholar 

  13. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. Mag. 2, 31–43 (2010)

    Article  Google Scholar 

  14. Jensfelt, P., Austin, D., Wijk, O., Andersonn, M.: Feature based condensation for mobile robot localization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  15. Konolige, K., Marder-Eppstein, E., Marthi, B.: Navigation in hybrid metric-topological maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  16. Krüsi, P., Bücheler, B., Pomerleau, F., Schwesinger, U., Siegwart, R., Furgale, P.: Lighting-invariant adaptive route following using iterative closest point matching. J. Field Robot. 32, 534–564 (2014)

    Article  Google Scholar 

  17. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  18. Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time. In: Proceedings of Robotics: Science and Systems (2012)

    Google Scholar 

  19. Leonard, J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. 7(4), 376–382 (1991)

    Article  Google Scholar 

  20. Mazuran, M., Tipaldi, G.D., Spinello, L., Burgard, W., Stachniss, C.: A statistical measure for map consistency in SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (2014)

    Google Scholar 

  21. McManus, C., Furgale, P., Stenning, B., Barfoot, T.D.: Lighting-invariant visual teach and repeat using appearance-based lidar. J. Field Robot. 30, 254–287 (2013)

    Article  Google Scholar 

  22. Mourikis, A.I., Roumeliotis, S.I.: On the treatment of relative-pose measurements for mobile robot localization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2006)

    Google Scholar 

  23. Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for multi-target tracking. IEEE Trans. Autom. Control 54(3), 481–497 (2009)

    Article  MathSciNet  Google Scholar 

  24. Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. Int. J. Robot. Res. 32, 826–840 (2013)

    Article  Google Scholar 

  25. Olson, E.B.: Real-time correlative scan matching. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  26. Röwekämper, J., Sprunk, C., Tipaldi, G.D., Stachniss, C., Pfaff, P., Burgard, W.: On the position accuracy of mobile robot localization based on particle filters combined with scan matching. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  27. Sibley, G., Mei, C., Reid, I., Newman, P.: Adaptive relative bundle adjustment. In: Proceedings of Robotics: Science and Systems (2009)

    Google Scholar 

  28. Sprunk, C., Tipaldi, G.D., Cherubini, A., Burgard, W.: Lidar-based teach-and-repeat of mobile robot trajectories. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  29. Strasdat, H., Davison, A.J., Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  30. Sünderhauf, N., Protzel, P.: Switchable constraints for robust pose graph SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  31. Tipaldi, G.D., Arras, K.O.: FLIRT - interest regions for 2D range data. In: Proceedings of the IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  32. Tipaldi, G.D., Meyer-Delius, D., Burgard, W.: Lifelong localization in changing environments. Int. J. Robot. Res. 32(14), 1662–1678 (2013)

    Article  Google Scholar 

  33. Xu, D., Badino, H., Huber, D.: Topometric localization on a road network. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the European Commission under the grant numbers ERC-AG-PE7-267686-LIFENAV, FP7-610603-EUROPA2, and H2020-645403-ROBDREAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Mazuran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mazuran, M., Boniardi, F., Burgard, W., Tipaldi, G.D. (2018). Relative Topometric Localization in Globally Inconsistent Maps. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics