Skip to main content

The Yoyo-Man

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

The Yoyo-Man project is a research action tending to explore the synergies of anthropomorphic locomotion. The seminal hypothesis is to consider the wheel as a plausible model of bipedal walking. In this paper we report on preliminary results developed along three perspectives combining biomechanics, neurophysiology and robotics. From a motion capture data basis of human walkers we first identify the center of mass (CoM) as a geometric center from which the motions of the feet are organized. Then we show how rimless wheels that model most passive walkers are better controlled when equipped with a stabilized mass on top of them. CoM and head play complementary roles that define what we call the Yoyo-Man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The statement has to be nuanced: rotating engines exist at molecular scale and some insects are able to shape objects as spheres to move them.

  2. 2.

    We did not find the exact translation of this word in English.

  3. 3.

    In biomechanics, the pelvis center is considered as the root node from which the body segment tree is built.

  4. 4.

    It is worth to mention at this stage that, due to the rolling of the foot on the ground, there is no zero velocity point which is fixed in the feet during the stance phase.

References

  1. Alexander, R.M.: Walking made simple. Science 308(5718), 58–59 (2005)

    Google Scholar 

  2. Anderson, S., Wisse, M., Atkeson, C., Hodgins, J.K., Zeglin, G., Moyer, B.: Powered bipeds based on passive dynamic principles. In: 5th IEEE-RAS International Conference on Humanoid Robots, pp. 110–116 (2005)

    Google Scholar 

  3. Armstrong, H.G.: Anthropometry and mass distribution for human analogues. Technical report, Aerosp. Med. Res. Lab Wright-Patterson AFB Ohio (1988)

    Google Scholar 

  4. Benallegue, M., Laumond, J.-P.: Metastability for high-dimensional walking systems on stochastically rough terrain. In: Robotics Science and Systems (2013)

    Google Scholar 

  5. Benallegue, M., Laumond, J.-P., Berthoz, A.: A Head-neck-system to Walk Without Thinking (2015). https://hal.archives-ouvertes.fr/hal-01136826

  6. Berthoz, A.: The Brain’s Sense of Movement. Harvard University Press, Massachusetts (2002)

    Google Scholar 

  7. Bove, M., Courtine, G., Schieppati, M.: Neck muscle vibration and spatial orientation during stepping in place in humans. J. Neurophys. 88(5), 223–241 (2002)

    Article  Google Scholar 

  8. Byl, K., Tedrake, R.: Metastable walking machines. Int. J. Robot. Res. 28(8), 1040–1064 (2009)

    Article  Google Scholar 

  9. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  10. Collins, S.H., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)

    Article  Google Scholar 

  11. Dietz, V.: Spinal cord pattern generators for locomotion. Clin. Neurophysiol. 114, 1379–1389 (2003). doi:10.1016/S1388-2457(03)00120-2

    Article  Google Scholar 

  12. Dumas, R., Cheze, L., Verriest, J.-P.: Adjustments to mcconville et al. and young et al. body segment inertial parameters. J. Biomechan. 40(3), 543–553 (2007)

    Google Scholar 

  13. Farkhatdinov, I., Hayward, V., Berthoz, A.: On the benefits of head stabilization with a view to control balance and locomotion in humanoids. In: Humanoids 2011, pp. 147–152 (2011)

    Google Scholar 

  14. Farkhatdinov, I., Michalska, H., Berthoz, A., Hayward, V.: Modeling verticality estimation during locomotion. In: Romansy 19 - Robot Design, Dynamics and Control CISM International Centre for Mechanical Sciences, vol. 544, pp. 359–366 (2013)

    Google Scholar 

  15. Fusco, N., Crétual, A.: Instantaneous treadmill speed determination using subject’s kinematic data. Gait Posture 28(4), 663–667 (2008)

    Article  Google Scholar 

  16. Goswami, A., Espiau, B., Keramane, A.: Limit cycles in a passive compass Gait Biped and Passivity-Mimicking control laws. Auton. Robots 4, 273–286 (1997)

    Article  Google Scholar 

  17. Hayot, C., Sakka, S., Fohanno, V., Lacouture, P.: Biomechanical modeling of the 3d center of mass trajectory during walking. In: Movement and Sport Sciences-Science and Motricité (2013)

    Google Scholar 

  18. Hicheur, H., Vieilledent, S., Berthoz, A.: Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci. Lett. 383, 87–92 (2005). doi:10.1016/j.neulet.2005.03.046

    Article  Google Scholar 

  19. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1620–1626 (2003). doi:10.1109/ROBOT.2003.1241826

  20. Lajoie, Y., Teasdale, N., Cole, J.D., Burnett, M., Bard, C., Fleury, M., Forget, R., Paillard, J., Lamarre, Y.: Gait of a deafferented subject without large myelinated sensory fibers below the neck. Neurology 47(1), 10915 (1996). ISSN 0028-3878. http://www.ncbi.nlm.nih.gov/pubmed/8710062

  21. Mombaur, K.: Using optimization to create self-stable human-like running. Robotica 27(3), 321–330 (2009)

    Article  Google Scholar 

  22. Olivier, A.-H., Kulpa, R., Pettré, J., Cretual, A.: A step-by-step modeling, analysis and annotation of locomotion. Comput. Anim. Virtual Worlds (2011). https://hal.inria.fr/inria-00536608

  23. Pozzo, T., Berthoz, A., Lefort, L.: Head stabilization during various locomotor tasks in humans. Exper. Brain Res. 82, 97–106 (1990)

    Article  Google Scholar 

  24. Sreenivasa, M.N., Soueres, P., Laumond, J.-P., Berthoz, A.: Steering a humanoid robot by its head. In: IROS, pp. 4451–4456 (2009)

    Google Scholar 

  25. Stokell, R., Yu, A., Williams, K., Treleaven, J.: Dynamic and functional balance tasks in subjects with persistent whiplash: a pilot trial. Manual therapy 16(4), 3948 (2011). ISSN 1532-2769. 10.1016/j.math.2011.01.012. http://www.ncbi.nlm.nih.gov/pubmed/21367648

  26. Raphan, T., Imai, T., Moore, S.T., Cohen, B.: Interaction of the body, head and eyes during walking and turning. Exper. Brain Res. 136, 1–18 (2001)

    Article  Google Scholar 

  27. Treleaven, J.: Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Manual therapy 13(1), 211 (2008). ISSN 1532-2769. 10.1016/j.math.2007.06.003. http://www.ncbi.nlm.nih.gov/pubmed/17702636

  28. Viviani, P., Berthoz, A.: Dynamics of the head-neck system in response to small perturbations: analysis and modeling in the frequency domain. Biolog. Cybern. 19(1), 1937 (1975). ISSN 0340-1200. http://www.ncbi.nlm.nih.gov/pubmed/1191717

  29. Vuillerme, N., Pinsault, N., Vaillant, J.: Postural control during quiet standing following cervical muscular fatigue: effects of changes in sensory inputs. Neurosci. Lett. 378(3), 1359 (2005). ISSN 0304-3940. 10.1016/j.neulet.2004.12.024. http://www.ncbi.nlm.nih.gov/pubmed/15781146

  30. Vukobratović, M.: On the stability of anthropomorphic systems. Math. Biosci. 15(1–2), 1–37 (1972)

    Article  MATH  Google Scholar 

  31. Wieber, P.-B.: Viability and Predictive Control for Safe Locomotion. In: IEEE-RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008)

    Google Scholar 

  32. Wieber, P.-B., Kuindersma, S., Tedrake, R.: Handbook of Robotics, 2nd edn., Chapter Modeling and Control of Legged Robots. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Acknowledgements

We deeply thank Armel Crétual and Anne-Hélène Olivier from M2S lab, university of Rennes 2, France, for providing the database of captured walking motion.

The work is supported by the European Research Council (ERC) through the Actanthrope project (ERC-ADG 340050) and by the European project KOROIBOT FP7-ICT-2013-10/611909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Laumond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Laumond, JP., Benallegue, M., Carpentier, J., Berthoz, A. (2018). The Yoyo-Man. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics