Skip to main content

Slip Detection and Recovery for Quadruped Robots

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

What should a legged robot do when it slips? When traction is lost, the locomotion can be irreversibly hampered. Being able to detect slippage at the very beginning and promptly recover the traction is crucial for body stability and can make the difference in a situation where falling is not an option. Indeed, the majority of locomotion controllers and state estimation algorithms rely on the assumption that the stance feet are not slipping. The following work presents a methodology for slip detection and estimation of the friction parameters, plus a recovery strategy which exploits the capabilities of a whole body controller, implemented for locomotion, which optimizes for the ground reaction forces (GRFs). The estimation makes use only of proprioceptive sensors (no vision). Even though the essence of the approach is quite general, the implementation is specialized for the quadruped robot HyQ. Simulation results demonstrate the effectiveness of the proposed approach while walking on challenging terrains (a slippery ramp or an ice slab).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Video available at http://www.youtube.com/watch?v=cNZPRsrwumQ.

  2. 2.

    Video available at https://youtu.be/Hrwi9-411AM.

References

  1. Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 249–258 (2007)

    Google Scholar 

  2. Aly, A.a: An antilock-braking systems (ABS) control: a technical review. Intell. Control Autom. 02(03), 186–195 (2011)

    Google Scholar 

  3. Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy, C.D., Siegwart, R.: State estimation for legged robots-consistent fusion of leg kinematics and IMU. In: Robotics: Science and Systems (2012)

    Google Scholar 

  4. Bretl, T., Lall, S.: Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)

    Article  Google Scholar 

  5. Caron, S., Pham, Q.-c., Nakamura, Y.: Leveraging cone double description for multi-contact stability of humanoids with applications to statics and dynamics. In: Robotics: Science and Systems (2015)

    Google Scholar 

  6. Chilian, A., Hirschmüller, H., Görner, M.: Multisensor data fusion for robust pose estimation of a six-legged walking robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2497–2504 (2011)

    Google Scholar 

  7. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Boston (2008)

    Book  MATH  Google Scholar 

  8. Feng, S., Xinjilefu, X., Huang, W., Atkeson, C.G.: 3D walking based on online optimization. In: 13th IEEE-RAS International Conference on Humanoid Robots (2013)

    Google Scholar 

  9. Focchi, M., Del Prete, A., Havoutis, I., Featherstone, R., Cald-well, D. G., Semini, C.: High-slope terrain locomotion for torque-controlled quadruped robots. Autonomous Robots 41(1), 259–272. doi:10.1007/s10514-016-9573-1 (2017)

  10. Focchi, M., Prete, A., Havoutis, I., Featherstone, R., Caldwell, D.G., Semini, C.: Ground reaction forces control for torque-controlled quadruped robots. In: IEEE International Conference on Intelligent Robots and Systems: Workshop on Whole-Body Control for Robots in the Real World (2014)

    Google Scholar 

  11. Frigerio, M., Buchli, J., Caldwell, D.G.: Code generation of algebraic quantities for robot controllers. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2346–2351, October 2012

    Google Scholar 

  12. Gramkow, C.: On averaging rotations. J. Math. Imaging Vis. 15(1–2), 7–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haessig, D.a., Friedland, B.: On the modeling and simulation of friction. In: American Control Conference, pp. 1256–1261 (1990)

    Google Scholar 

  14. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.: Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 981–988. IEEE (2014)

    Google Scholar 

  15. Holweg, E., Hoeve, H., Jongkind, W., Marconi, L., Melchiorri, C., Bonivento, C.: Slip detection by tactile sensors: algorithms and experimental results. In: IEEE International Conference on Robotics and Automation, vol. 09, 3234–3239 (1996)

    Google Scholar 

  16. Izumi, I., Nakamura, T., Sack, R.L.: In: Snow Engineering: Recent Advances: Proceedings of the Third International Conference, Sendai, Japan, 26–31 May 1996. CRC Press (1997)

    Google Scholar 

  17. Klasing, K., Althoff, D., Wollherr, D., Buss, M.: Comparison of surface normal estimation methods for range sensing applications. In: IEEE International Conference on Robotics and Automation, pp. 3206–3211 (2009)

    Google Scholar 

  18. Kuindersma, S., Permenter, F., Tedrake, R., Bu, A.: An efficiently solvable quadratic program for stabilizing dynamic locomotion. In: IEEE International Conference on Robotics and Automation, pp. 2589–2594 (2014)

    Google Scholar 

  19. Lide, D.R.: CRC Handbook of Chemistry and Physics, vol. 53, 94th edn. CRC Press, Boca Raton (2013)

    Google Scholar 

  20. Melchiorri, C.: Slip detection and control using tactile and force sensors. IEEE/ASME Trans. Mechatronics 5(3), 235–243 (2000)

    Article  Google Scholar 

  21. Palli, G., Moriello, L., Scarcia, U., Melchiorri, C.: Development of an optoelectronic 6-axis force/torque sensor for robotic applications. Sensors Actuators A Phys. 220, 333–346 (2014)

    Article  Google Scholar 

  22. Rusu, R.B.: Semantic 3d object maps for everyday manipulation in human living environments. PhDThesis 24(4), 345–348 (2010)

    Google Scholar 

  23. Schaal, S.: The SL simulation and real-time control software package. Technical Report, Accessed Aug 2015 at http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf (2006)

  24. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ - a hydraulically and electrically actuated quadruped robot. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 225(6), 831–849 (2011)

    Article  Google Scholar 

  25. Stewart, D., Trinkle, J.: An implicit time-stepping scheme for rigid body dynamics with Coulomb friction. In: IEEE International Conference on Robotics and Automation, vol. 1 (2000)

    Google Scholar 

  26. Takemura, H., Deguchi, M., Ueda, J., Matsumoto, Y., Ogasawara, T.: Slip-adaptive walk of quadruped robot. Robot. Auton. Syst. 53(2), 124–141 (2005)

    Article  Google Scholar 

  27. Vukobratović, M., Frank, A.A., Juricić, D.: On the stability of biped locomotion. IEEE Trans. Bio-Med. Eng. 17(1), 25–36 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Focchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Focchi, M., Barasuol, V., Frigerio, M., Caldwell, D.G., Semini, C. (2018). Slip Detection and Recovery for Quadruped Robots. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics