Skip to main content

Engineering Advanced Models of the Glioblastoma Microenvironment Using Biomaterials

  • Chapter
  • First Online:
Extracellular Matrix in Tumor Biology

Part of the book series: Biology of Extracellular Matrix ((BEM))

  • 880 Accesses

Abstract

Glioblastoma (GBM) is the most common and deadly primary brain cancer. Patients diagnosed with GBM have a mean survival time of only 21 months, despite an intense push over the past several decades to dissect underlying mechanisms and develop new therapies. Whereas discovery efforts related to GBM have traditionally focused on cell-intrinsic factors, such as genetic and epigenetic lesions, it has more recently become clear that cell-extrinsic factors within the tumor microenvironment play important pathogenic roles as well. More surprisingly, physical aspects of the microenvironment, including tissue structure and mechanics, can regulate signaling events that contribute to dysplasia, invasion, and metastasis. This chapter will describe the basic biology of physical microenvironmental regulation of the GBM, with a focus on the extracellular matrix. We will also describe how components of the physical microenvironment can be recapitulated using biomaterials technology and how these new platforms can contribute to next-generation culture systems for discovery and screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri S, Burrell KE, Wolf A et al (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz) 61:25–41

    Article  CAS  Google Scholar 

  • Alberti K, Davey RE, Onishi K et al (2008) Functional immobilization of signaling proteins enables control of stem cell fate. Nat Methods 5:645–650

    Article  CAS  PubMed  Google Scholar 

  • Altaner C (2008) Glioblastoma and stem cells. Neoplasma 55:369–374

    CAS  PubMed  Google Scholar 

  • Ananthanarayanan B, Kim Y, Kumar S (2011) Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32:7913–7923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–866

    Article  CAS  PubMed  Google Scholar 

  • Ariza A, López D, Mate JL et al (1995) Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemistry study. Hum Pathol 26:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Belien ATJ, Paganetti PA, Schwab ME (1999) Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol 144:373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belot N, Rorive S, Doyen I et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36:375–390

    Article  CAS  PubMed  Google Scholar 

  • Berens ME, Giese A (1999) “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C-W, Kumar S (2013) Vinculin tension distributions of individual stress fibers within cell–matrix adhesions. J Cell Sci 126:3021–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia 59:1169–1180

    Article  PubMed  Google Scholar 

  • Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. JAMA 90:823–825

    Article  Google Scholar 

  • Deforest CA, Polizzoti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delpech B, Maingonnat C, Girard N et al (1993) Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. Eur J Cancer 29A:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228

    Article  PubMed  Google Scholar 

  • Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Elkin BS, Azeloglu EU, Costa KD et al (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24:812–822

    Article  PubMed  Google Scholar 

  • Engler A, Bacakova L, Newman C et al (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes TG, Diogo MM, Clark DS et al (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlander DR, Zagzag D, Shiff B et al (1996) Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res 56:1939–1947

    CAS  PubMed  Google Scholar 

  • Gallego-Perez D, Higuita-Castro N, Denning L et al (2012) Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration. Lab Chip 12:4424–4432

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592

    Article  CAS  PubMed  Google Scholar 

  • Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39:235–250

    Article  CAS  PubMed  Google Scholar 

  • Giese A, Loo MA, Rief MD et al (1995) Substrates for astrocytoma invasion. Neurosurgery 37:294–301

    Article  Google Scholar 

  • Gordon VD, Valentine MT, Gardel ML et al (2003) Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Exp Cell Res 289:58–66

    Article  CAS  PubMed  Google Scholar 

  • Griffith LG, Schwartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  PubMed  Google Scholar 

  • Herishanu Y, Gibellini F, Njuguna N et al (2011) CD44 signaling via PI3K/AKT and MAPK/ERK pathways protects CLL cells from spontaneous and drug induced apoptosis through MCL-1. Leuk Lymphoma 52:1758–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Huse HT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19(1):132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman LJ, Brangwynne CP, Kasza KE et al (2005) Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys J 89:635–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawataki T, Yamane T, Naganuma H et al (2007) Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res 313:3819–3831

    Article  CAS  PubMed  Google Scholar 

  • Khademhosseini A, Langer R, Borenstein J et al (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103:2480–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kumar S (2014) CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res 12(10):1416–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott JC, Mahesparan R, Garcia-Cabrera I et al (1998) Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int J Cancer 75:864–872

    Article  CAS  PubMed  Google Scholar 

  • Kolega J, Janson LW, Taylor DL (1991) The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol 114:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Koochekpour S, Pilkington GJ, Merzak A (1995) Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63:450–454

    Article  CAS  PubMed  Google Scholar 

  • Lathia JD, Li M, Hall PE et al (2012) Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol 72:766–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404

    CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  CAS  PubMed  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur A, Loskill P, Shao K et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLendon R, Friedman A, Bigner D et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  • Moon JJ, West JL (2008) Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr Top Med Chem 8(4):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Ishimuro T, Kato K et al (2007) Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials 28:1048–1060

    Article  CAS  PubMed  Google Scholar 

  • Oakes PW, Beckham Y, Stricker J et al (2012) Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J Cell Biol 196:363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osswald M, Jung E, Sahm F et al (2015) Brain tumor cells interconnect to a functional and resistant network. Nature 528(7850):93–98

    CAS  PubMed  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–245

    Article  CAS  PubMed  Google Scholar 

  • Pathak A, Kumar S (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci USA 109(26):10334–10339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak A, Kumar S (2013) Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Int Biol 5:1067–1075

    CAS  Google Scholar 

  • Paulus W, Baur I, Schuppan D et al (1993) Characterization of integrin receptors in normal and neoplastic human brain. Am J Pathol 143:154–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne LS, Huang P (2013) The pathobiology of collagens in glioma. Mol Cancer Res 11(10):1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Pelham RJ, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietras A, Katz AM, Ekstrom EJ et al (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14(3):357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polacheck WJ, Zervantonakis IK, Kamm RD (2013) Tumor cell migration in complex microenvironments. Cell Mol Life Sci 70:1335–1356

    Article  CAS  PubMed  Google Scholar 

  • Rape A, Zibinsky M, Murthy N, Kumar S (2015) A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Nat Commun 6:8129

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross AM, Jiang ZX, Bastmeyer M, Lahann J (2012) Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8:336–355

    Article  CAS  PubMed  Google Scholar 

  • Rutka JT, Muller M, Hubbard SL et al (1999) Astrocytoma adhesion to extracellular matrix: functional significance of integrin and focal adhesion kinase expression. J Neuropathol Exp Neurol 58:198–209

    Article  CAS  PubMed  Google Scholar 

  • Scherer H (1938) Structural development in gliomas. Am J Cancer 34:333–348

    Google Scholar 

  • Scherer HJ (1940) The forms of growth in gliomas and their practical significance. Brain 63:1–35

    Article  Google Scholar 

  • Selbekk T, Brekken R, Solheim O et al (2010) Tissue motion and strain in the human brain assessed by intraoperative ultrasound in glioma patients. Ultrasound Med Biol 36:2–10

    Article  PubMed  Google Scholar 

  • Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 32(37):12950–12960

    Google Scholar 

  • Solon J, Levental I, Sengupta K et al (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93:4453–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  • Tentler JJ, Tan AC, Weekes CD et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103:5567–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todhunter ME, Jee NY, Hughes AJ et al (2015) Programmed synthesis of three-dimensional tissues. Nat Methods 12:975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  CAS  PubMed  Google Scholar 

  • Tysnes BB, Mahesparan R, Thorsen F et al (1999) Laminin expression by glial fibrillary acidic protein positive cells in human gliomas. Int J Dev Neurosci 17:531–539

    Article  CAS  PubMed  Google Scholar 

  • Ulrich T, Kumar S (2011) Mechanobiology in health and disease in the central nervous system. In: Nagatomi J (ed) Mechanobiology handbook. CRC Press, Boca Raton, pp 391–411

    Chapter  Google Scholar 

  • Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiranowska M, Ladd S, Moscinski LC et al (2010) Modulation of hyaluronan production by CD44 positive glioma cells. Int J Cancer 127:532–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31:5678–5688

    Article  CAS  PubMed  Google Scholar 

  • Zhu BS, Zhang QQ, Lu QH et al (2004) Nanotopographical guidance of C6 glioma cell alignment and oriented growth. Biomaterials 25:4215–4223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rape, A., Kumar, S. (2017). Engineering Advanced Models of the Glioblastoma Microenvironment Using Biomaterials. In: Brekken, R., Stupack, D. (eds) Extracellular Matrix in Tumor Biology. Biology of Extracellular Matrix. Springer, Cham. https://doi.org/10.1007/978-3-319-60907-2_5

Download citation

Publish with us

Policies and ethics