Skip to main content

Parametrix Construction

  • Chapter
  • First Online:
Lévy Matters VI

Part of the book series: Lecture Notes in Mathematics ((LEVY,volume 2187))

  • 711 Accesses

Abstract

In this chapter we present an existence result for Feller processes with symbols of form

$$\displaystyle{ q(x,\xi ) =\psi _{\boldsymbol{\alpha }(x)}(\xi ) }$$

where (ψ α ) αI is a family of continuous negative definite functions and \(\boldsymbol{\alpha }: \mathbb{R}^{} \rightarrow I\) a Hölder continuous mapping. We derive heat kernel estimates for the transition density and its time derivative and prove the well-posedness of the associated martingale problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the remark preceding Theorem 1.38.

  2. 2.

    We use the following convention: For a Hölder continuous function f we denote by ϱ( f) the Hölder exponent of f.

  3. 3.

    In the sense of finite-dimensional distributions.

  4. 4.

    Or C3’.

References

  1. Berg, C., Forst, G.: Non-symmetric translation invariant Dirichlet forms. Invent. Math. 21, 199–212 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  3. Blumenthal, R., Getoor, R.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961)

    MathSciNet  MATH  Google Scholar 

  4. Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271, 179–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böttcher, B.: Some investigations in Feller processes generated by pseudo-differential operators. PhD thesis, Swansea University (2004)

    Google Scholar 

  6. Böttcher, B.: A parametrix construction for the fundamental solution of the evolution equation associated with a pseudo-differential operator generating a Markov process. Math. Nachr. 278, 1235–1241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Böttcher, B., Schilling, R., Wang, J.: Lévy Matters III. Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Lecture Notes in Mathematics, vol. 2099. Springer, Cham (2013)

    Google Scholar 

  8. Chen, Z.-Q., Zhang, X.: Heat kernels and analyticity of non-symmetric jump diffusion semigroups. Prob. Theory Relat. Fields 165, 267–312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cuppens, R., Lukacs, E.: On the domain of definition of analytic characteristic functions. Ann. Math. Stat. 41, 1096–1101 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feller, W.: Zur Theorie der stochastischen Prozesse. (Existenz- und Eindeutigkeitssätze) Math. Ann. 113, 113–160 (1936) (An English translation is contained in [128])

    Google Scholar 

  11. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. De Gruyter, Berlin (2011)

    MATH  Google Scholar 

  12. Hoh, W.: Pseudo-Differential Operators Generating Markov Processes. Habilitationsschrift. Universität Bielefeld, Bielefeld (1998)

    MATH  Google Scholar 

  13. Huang, L.: Density estimates for SDEs driven by tempered stable processes. Preprint. arXiv 1504.04183

    Google Scholar 

  14. Jacob, N.: Pseudo Differential Operators and Markov Processes, I: Fourier Analysis and Semigroups. Imperial College Press, London (2001)

    Book  MATH  Google Scholar 

  15. Jacob, N.: Pseudo Differential Operators and Markov Processes, II: Generators and Their Potential Theory. Imperial College Press, London (2002)

    Book  MATH  Google Scholar 

  16. Jacob, N.: Pseudo Differential Operators and Markov Processes, III: Markov Processes and Applications. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  17. Jakubowski, T., Szczypkowski, K.: Time-dependent gradient perturbations of fractional Laplacian. J. Evol. Equ. 10, 319–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knopova, V., Kulik, A.: Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise. Preprint. arXiv 1412.8732

    Google Scholar 

  19. Kochubei, A.N.: Parabolic pseudo differential equations, hypersingular integrals and Markov processes. Math. USSR Izv. 33, 233–259 (1989)

    Article  Google Scholar 

  20. Kolokoltsov, V.N.: Symmetric stable laws and stable-like jump diffusions. Proc. Lond. Math. Soc. 80, 725–768 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolokoltsov, V.N.: Markov Processes, Semigroups and Generators. De Gruyter, Berlin (2011)

    MATH  Google Scholar 

  22. Komatsu, T.: On the martingale problem for generators of stable processes with perturbations. Osaka J. Math. 21, 113–132 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Komatsu, T.: Pseudo-differential operators and Markov processes. J. Math. Soc. Jpn. 36, 387–419 (1984)

    Article  MATH  Google Scholar 

  24. Kulik, A.: On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise. Preprint. arXiv 1511.00106

    Google Scholar 

  25. Kumano-go, H.: Pseudo-Differential Operators. MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  26. Levi, E.E.: Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. del. Circ. Mat. Palermo 24, 275–317 (1907)

    Article  MATH  Google Scholar 

  27. Potrykus, A.: Pseudo-differential operators with rough negative definite symbols. Integral Equ. Oper. Theory 66, 441–461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sandrić, N.: Ergodicity of Lévy-type processes. ESAIM Probab. Stat. 20, 154–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schilling, R.L.: Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theory Relat. Fields 112, 565–611 (1998)

    Article  MATH  Google Scholar 

  30. Schilling, R.L., Schnurr, A.: The symbol associated with the solution of a stochastic differential equation. Electron. J. Probab. 15, 1369–1393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ushakov, N.G.: Selected Topics on Characteristic Functions. De Gruyter, Berlin (2011) [reprint]

    Google Scholar 

  32. van Casteren, J.A.: Markov Processes, Feller Semigroups and Evolution Equations. World Scientific, Singapore (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kühn, F. (2017). Parametrix Construction. In: Lévy Matters VI. Lecture Notes in Mathematics(), vol 2187. Springer, Cham. https://doi.org/10.1007/978-3-319-60888-4_3

Download citation

Publish with us

Policies and ethics