Skip to main content

Efficient Low Order Virtual Elements for Anisotropic Materials at Finite Strains

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 46))

Abstract

Virtual elements were introduced in the last decade and applied to problems in solid mechanics. The success of this methodology when applied to linear problems asks for an extension to the nonlinear regime. This work is concerned with the numerical simulation of structures made of anisotropic material undergoing large deformations. Especially problems with hyperelastic matrix materials and transversly isotropic behaviour will be investigated. The virtual element formulation is based on a low-order formulations for problems in two dimensions. The elements can be arbitrary polygons. The formulation considered relies on minimization of energy, with a novel construction of the stabilization energy and a mixed approximation for the fibers describing the anisotropic behaviour. The formulation is investigated through a several numerical examples, which demonstrate their efficiency, robustness, convergence properties, and locking-free behaviour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.J. Bathe, Finite Element Procedures (Prentice-Hall, Englewood Cliffs, New Jersey, 1996)

    MATH  Google Scholar 

  2. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Beirão da Veiga, F. Brezzi, L. Marini, Virtual Elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Beirão da Veiga, C. Lovadina, D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)

    Article  MathSciNet  Google Scholar 

  6. T. Belytschko, L.P. Bindeman, Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput. Methods Appl. Mech. Eng. 88(3), 311–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  8. T. Belytschko, J.S.J. Ong, W.K. Liu, J.M. Kennedy, Hourglass control in linear and nonlinear problems. Comput. Methods Appl. Mech. Eng. 43, 251–276 (1984)

    Article  MATH  Google Scholar 

  9. S. Biabanaki, A. Khoei, A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput. Mech. 50, 19–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.O.R. Biabanaki, A.R. Khoei, P. Wriggers, Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput. Methods Appl. Mech. Eng. 269, 198–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Boerner, S. Loehnert, P. Wriggers, A new finite element based on the theory of a Cosserat point—extension to initially distorted elements for 2D plane strains. Int. J. Numer. Methods Eng. 71, 454–472 (2007)

    Google Scholar 

  12. A. Cangiani, G. Manzini, A. Russo, N. Sukumar, Hourglass stabilization and the virtual element method. Int. J. Numer. Methods Eng. 102, 404–436 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Chi, L. Beirão da Veiga, G. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. (2016). doi:10.1016/j.cma.2016.12.020

    Google Scholar 

  14. H. Chi, C. Talischi, O. Lopez-Pamies, G.H. Paulino, Polygonal finite elements for finite elasticity. Int. J. Numer. Methods Eng. 101(4), 305–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, 2009)

    Google Scholar 

  16. D. Flanagan, T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)

    Article  MATH  Google Scholar 

  17. A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  Google Scholar 

  18. N. Hamila, P. Boisse, Locking in simulation of composite reinforcement deformations. analysis and treatment. Composites: Part A 109–117 (2013)

    Google Scholar 

  19. J. Korelc, U. Solinc, P. Wriggers, An improved EAS brick element for finite deformation. Comput. Mech. 46, 641–659 (2010)

    Article  MATH  Google Scholar 

  20. J. Korelc, P. Wriggers, Automation of Finite Element Methods (Springer, Berlin, 2016)

    Book  MATH  Google Scholar 

  21. P. Krysl, Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int. J. Numer. Methods Eng. 103, 650–670 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Krysl, Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. Int. J. Numer. Methods Eng. 103, 437–449 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elements Anal. Des. 108, 41–53 (2016)

    Article  MathSciNet  Google Scholar 

  24. S. Loehnert, E. Boerner, M. Rubin, P. Wriggers, Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput. Mech. 36, 255–265 (2005)

    Article  MATH  Google Scholar 

  25. D.S. Mueller-Hoeppe, S. Loehnert, P. Wriggers, A finite deformation brick element with inhomogeneous mode enhancement. Int. J. Numer. Methods Eng. 78, 1164–1187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Nadler, M. Rubin, A new 3-D finite element for nonlinear elasticity using the theory of a cosserat point. Int. J. Solids Struct. 40, 4585–4614 (2003)

    Article  MATH  Google Scholar 

  27. S. Reese, On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Methods Eng. 57, 1095–1127 (2003)

    Article  MATH  Google Scholar 

  28. S. Reese, M. Kuessner, B.D. Reddy, A new stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Eng. 44, 1617–1652 (1999)

    Article  Google Scholar 

  29. S. Reese, P. Wriggers, A new stabilization concept for finite elements in large deformation problems. Int. J. Numer. Methods Eng. 48, 79–110 (2000)

    Article  MATH  Google Scholar 

  30. J. Schröder, Anisotropic polyconvex energies, in Polyconvex Analysis, vol. 62, ed. by J. Schröder (CISM, Springer, Wien, 2009), pp. 1–53

    Google Scholar 

  31. J. Schröder, P. Wriggers, D. Balzani, A new mixed finite element based on different approximations of the minors of deformation tensors. Comput. Methods Appl. Mech. Eng. 200, 3583–3600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Methods Eng. 61, 2159–2181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Sukumar, E.A. Malsch, Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13, 129–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.H.W. ten Thjie, R. Akkerman, Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Composites: Part A 1167–1176 (2008)

    Google Scholar 

  35. P. Wriggers, Nonlinear Finite Elements (Springer, Berlin, Heidelberg, New York, 2008)

    MATH  Google Scholar 

  36. P. Wriggers, B.D. Reddy, W. Rust, B. Hudobivnic, Efficient virtual element formulations for compressible and incompressible finite deformations. Comput. Mech. (accepted) (2017)

    Google Scholar 

  37. P. Wriggers, W. Rust, B.D. Reddy, A virtual element method for contact. Comput. Mech. 58, 1039–1050 (2016a)

    Article  MathSciNet  Google Scholar 

  38. P. Wriggers, J. Schröder, F. Auricchio, Finite element formulations for large strain anisotropic materials. Int. J. Adv. Model. Simul. Eng. Sci. 3(25), 1–18 (2016b)

    Google Scholar 

Download references

Acknowledgements

The paper is a contribution to honor Professor Roger Owen on behalf of his 75th birthday. The authors like to thank Roger Owen for his continuous support and friendship throughout the last four decades of research on finite element methods. The first author would like to thank for the support of the DFG within the priority program SPP 1748 1748 ‘Reliable simulation techniques in solid mechanics: Development of non-standard discretization methods, mechanical and mathematical analysis’ under the project WR 19/50-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wriggers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wriggers, P., Hudobivnik, B., Korelc, J. (2018). Efficient Low Order Virtual Elements for Anisotropic Materials at Finite Strains. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-60885-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60885-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60884-6

  • Online ISBN: 978-3-319-60885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics