Skip to main content

Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity

  • Chapter
  • First Online:
Advances in Computational Plasticity

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 46))

Abstract

To analyze complex, heterogeneous materials, a fast and accurate method is needed. This means going beyond the classical finite element method, in a search for the ability to compute, with modest computational resources, solutions previously infeasible even with large cluster computers. In particular, this advance is motivated by composites design. Here, we apply similar principle to another complex, heterogeneous system: additively manufactured metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Belytschko, S. Loehnert, J.H. Song, Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int. J. Numer. Methods Eng. 73(6), 869–894 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.A. Bessa et al., A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 320, 633–667 (2017)

    Google Scholar 

  3. I. Doghri, A. Ouaar, Homogenization of two-phase elasto-plastic composite materials and structures: study of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solid. Struct. 40(7), 1681–1712 (2003)

    Article  MATH  Google Scholar 

  4. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 241 (The Royal Society, 1957) pp. 376–396

    Google Scholar 

  5. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solid. 11(2), 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Hill, A self-consistent mechanics of composite materials. J. Mech. Phys. Solid. 13(4), 213–222 (1965)

    Article  MathSciNet  Google Scholar 

  7. International A, Standard Terminology for Additive Manufacturing Technologies, F2792-12a edn (2015)

    Google Scholar 

  8. P. Krysl, S. Lall, J. Marsden, Dimensional model reduction in non linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51, 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Le, J. Yvonnet, Q.C. He, Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. (2015)

    Google Scholar 

  10. R.A. Lebensohn, A.K. Kanjarla, P. Eisenlohr, An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32, 59–69 (2012)

    Article  Google Scholar 

  11. Z. Liu, J.A. Moore, S. M. Aldousari, H.S. Hedia, S.A. Asiri, W.K. Liu, A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput. Mech. 1–19 (2015)

    Google Scholar 

  12. Z. Liu, M. Bessa, W. Liu, Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2016a)

    Article  MathSciNet  Google Scholar 

  13. Z. Liu, J. Moore, W. Liu, An extended micromechanics method for probing interphase properties in polymer nanocomposites. J. Mech. Phys. Solid. (2016). doi:10.1016/j.jmps.2016.05.002

  14. J. MacQueen et al., Some methods for classification and analysis of multivariate observations, in Proceedings Of The Fifth Berkeley Symposium On Mathematical Statistics And Probability, vol. 14, Oakland, CA, USA, pp. 281–297 (1967)

    Google Scholar 

  15. R.D. McGinty, Multiscale representation of polycrystalline inelasticity. PhD thesis, Geogia Tech, 2001

    Google Scholar 

  16. J.C. Michel, P. Suquet, Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput. Methods Appl. Mech. Eng. 193, 5477–5502 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Oskay, J. Fish, Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 196, 1216–1243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.R. Owen, E. Hinton, Finite Elements in Plasticity (Pineridge Press, 1980)

    Google Scholar 

  19. F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  20. S. Roussette, J.C. Michel, P. Suquet, Nonuniform transformation field analysis of elastic viscoplastic composites. Compos. Sci. Technol. 69, 22–27 (2009)

    Article  Google Scholar 

  21. C. Ventola, Medical applications for 3d printing: current and projected uses. Pharm. Ther. 39, 704–711 (2014)

    Google Scholar 

  22. I.H. Witten, E. Frank, Data Mining: Practical machine learning tools and techniques (Morgan Kaufmann, 2005)

    Google Scholar 

  23. J. Yvonnet, Q.C. He, The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 223, 341–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Yvonnet, E. Monteiro, Q.C. He, Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int. J. Multiscale Comput. Eng. 11 (2013)

    Google Scholar 

Download references

Acknowledgements

Z.L., O.L.K., C.Y. and W.K.L. warmly thank the support from AFOSR grant No. FA9550-14-1-0032, National Institute of Standards and Technology and Center for Hierarchical Materials Design (CHiMaD) under grant No. 70NANB13Hl94 and 70NANB14H012, and DOE CF-ICME project under grant No. DE-EE0006867. O.L.K. thanks United States National Science Foundation (NSF) for their support through the NSF Graduate Research Fellowship Program (GRFP) under financial award number DGE-1324585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Kam Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, Z., Kafka, O.L., Yu, C., Liu, W.K. (2018). Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-60885-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60885-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60884-6

  • Online ISBN: 978-3-319-60885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics