Skip to main content

Phosphoinositides and Cell Polarity in the Drosophila Egg Chamber

  • Chapter
  • First Online:
Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

  • 2557 Accesses

Abstract

Phosphatidylinositol phosphates (PIPs) are essential membrane components. They are localized at distinct membrane domains and recruit distinct effectors; they play an important role in the maintenance of membrane identity. They are essential for many cellular functions that include membrane trafficking, cytoskeletal organization, cell polarity and tissue morphogenesis. Cell polarity is also controlled by a set of polarity proteins, the PAR proteins, well conserved among bilaterians. These proteins are part of two dynamic networks that are engaged in a mutual negative-feedback regulation. PAR proteins control cell polarity by regulating cytoskeletal organization, asymmetric distributions of cellular components and directional transport through the cells. They share common activities with the PIPs in the control of intracellular polarity. Therefore, the analysis of potential cross talks between polarity proteins and PIPs is particularly important. The Drosophila egg chamber provides a very good model system to study the processes that control cell polarity. It includes the oocyte, a large cell in which asymmetric transport is very easy to monitor. Furthermore, the oocyte is surrounded by a follicular epithelium that allows the study of cross talks between polarity and tissue morphogenesis. This review focuses on the polarization of Drosophila egg chamber and our understanding of PIPs requirement during Drosophila oogenesis and discusses the relationship between PIPs and polarity proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18(23):R1082–R1087

    Article  CAS  PubMed  Google Scholar 

  • Ben El Kadhi K, Roubinet C, Solinet S, Emery G, Carreno S (2011) The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 21(12):1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Berg CA (2005) The Drosophila shell game: patterning genes and morphological change. Trends Genet 21(6):346–355

    Article  CAS  PubMed  Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7(6):1749–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bethoney KA, King MC, Hinshaw JE, Ostap EM, Lemmon MA (2009) A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proc Natl Acad Sci USA 106(32):13359–13364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti P, Kolay S, Yadav S, Kumari K, Nair A, Trivedi D, Raghu P (2015) A dPIP5K dependent pool of phosphatidylinositol 4,5 bisphosphate (PIP2) is required for G-protein coupled signal transduction in Drosophila photoreceptors. PLoS Genet 11(1):e1004948

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung LS, Schupbach T, Shvartsman SY (2011) Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis. Curr Opin Genet Dev 21(6):719–725

    Article  CAS  PubMed  Google Scholar 

  • Claret S, Jouette J, Benoit B, Legent K, Guichet A (2014) PI(4,5)P2 produced by the PI4P5K SKTL controls apical size by tethering PAR-3 in Drosophila epithelial cells. Curr Biol 24(10):1071–1079

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo G, Vicinanza M, De Matteis MA (2008) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20(4):360–370

    Article  PubMed  Google Scholar 

  • Devergne O, Tsung K, Barcelo G, Schupbach T (2014) Polarized deposition of basement membrane proteins depends on Phosphatidylinositol synthase and the levels of Phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci USA 111(21):7689–7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devergne O, Sun GH, Schupbach T (2017) Stratum, a homolog of the human GEF Mss4, partnered with Rab8, controls the basal restriction of basement membrane proteins in epithelial cells. Cell Rep 18(8):1831–1839

    Article  CAS  PubMed  Google Scholar 

  • Echard A (2012) Phosphoinositides and cytokinesis: the “PIP” of the iceberg. Cytoskeleton (Hoboken) 69(11):893–912

    Article  CAS  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasma and directs localization of the posterior determinant nanos. Cell 66(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Fichelson P, Jagut M, Lepanse S, Lepesant JA, Huynh JR (2010) lethal giant larvae is required with the par genes for the early polarization of the Drosophila oocyte. Development 137(5):815–824

    Article  CAS  PubMed  Google Scholar 

  • Gassama-Diagne A, Payrastre B (2009) Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. Int Rev Cell Mol Biol 273:313–343

    Article  CAS  PubMed  Google Scholar 

  • Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8(9):963–970

    Article  CAS  PubMed  Google Scholar 

  • Gervais L, Claret S, Januschke J, Roth S, Guichet A (2008) PIP5K-dependent production of PIP2 sustains microtubule organization to establish polarized transport in the Drosophila oocyte. Development 135(23):3829–3838

    Article  CAS  PubMed  Google Scholar 

  • Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 13(24):3244–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman CH, Gonsalvez GB (2017) The role of microtubule motors in mRNA localization and patterning within the Drosophila oocyte. In: Kloc M (ed) Oocytes. Springer, Heidelberg

    Google Scholar 

  • Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goni GM, Epifano C, Boskovic J, Camacho-Artacho M, Zhou J, Bronowska A, Martin MT, Eck MJ, Kremer L, Grater F et al (2014) Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proc Natl Acad Sci USA 111(31):E3177–E3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Reyes A, St Johnston D (1998) The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125(18):3635–3644

    CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, Elliott H, St Johnston D (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375(6533):654–658

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Toscano S, Trivedi D, Jones DR, Mathre S, Clarke JH, Divecha N, Raghu P (2013) Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) regulates TOR signaling and cell growth during Drosophila development. Proc Natl Acad Sci USA 110(15):5963–5968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34(Pt 5):647–662

    Article  CAS  PubMed  Google Scholar 

  • Hilgemann DW (2007) Local PIP(2) signals: when, where, and how? Pflugers Arch 455(1):55–67

    Article  CAS  PubMed  Google Scholar 

  • Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232(3):559–574

    Article  CAS  PubMed  Google Scholar 

  • Hsu HJ, LaFever L, Drummond-Barbosa D (2008) Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila. Dev Biol 313(2):700–712

    Article  CAS  PubMed  Google Scholar 

  • Huynh JR, St Johnston D (2004) The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 14(11):R438–R449

    Article  CAS  PubMed  Google Scholar 

  • Idevall-Hagren O, De Camilli P (2015) Detection and manipulation of phosphoinositides. Biochim Biophys Acta 1851(6):736–745

    Article  CAS  PubMed  Google Scholar 

  • Jackson CL, Walch L, Verbavatz JM (2016) Lipids and their trafficking: an integral part of cellular organization. Dev Cell 39(2):139–153

    Article  CAS  PubMed  Google Scholar 

  • Jagut M, Mihaila-Bodart L, Molla-Herman A, Alin MF, Lepesant JA, Huynh JR (2013) A mosaic genetic screen for genes involved in the early steps of Drosophila oogenesis. G3 (Bethesda) 3(3):409–425

    Article  CAS  Google Scholar 

  • Krahn MP, Klopfenstein DR, Fischer N, Wodarz A (2010) Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol 20(7):636–642

    Article  CAS  PubMed  Google Scholar 

  • Lecompte O, Poch O, Laporte J (2008) PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci 33(10):453–460

    Article  CAS  PubMed  Google Scholar 

  • Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD (1996) The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J 15(23):6584–6594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zuo X, Yue P, Guo W (2007) Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol Biol Cell 18(11):4483–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyer N, Kolotuev I, Pinot M, Le Borgne R (2015) Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth. Proc Natl Acad Sci USA 112(41):12717–12722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder P, Aranjuez G, Amick J, McDonald JA (2012) Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 22(5):363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128(2):383–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meignin C, Davis I (2010) Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 22(1):112–119

    Article  CAS  PubMed  Google Scholar 

  • Mirouse V, Formstecher E, Couderc JL (2006) Interaction between Polo and BicD proteins links oocyte determination and meiosis control in Drosophila. Development 133(20):4005–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montell DJ, Yoon WH, Starz-Gaiano M (2012) Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 13(10):631–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais-de-Sa E, Mukherjee A, Lowe N, St Johnston D (2014) Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development 141(15):2984–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman-Silberberg FS, Schuepbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF-alpha-like protein. Cell 75(1):165–174

    Article  CAS  PubMed  Google Scholar 

  • Odorizzi G, Babst M, Emr SD (2000) Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25(5):229–235

    Article  CAS  PubMed  Google Scholar 

  • Oikawa T, Yamaguchi H, Itoh T, Kato M, Ijuin T, Yamazaki D, Suetsugu S, Takenawa T (2004) PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nat Cell Biol 6(5):420–426

    Article  CAS  PubMed  Google Scholar 

  • Orme MH, Alrubaie S, Bradley GL, Walker CD, Leevers SJ (2006) Input from Ras is required for maximal PI(3)K signalling in Drosophila. Nat Cell Biol 8(11):1298–1302

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee N, Kavoussi A, Seo JT, Kim CH, Moon SJ (2015) Ciliary Phosphoinositide regulates ciliary protein trafficking in Drosophila. Cell Rep 13(12):2808–2816

    Article  CAS  PubMed  Google Scholar 

  • Pendaries C, Tronchere H, Racaud-Sultan C, Gaits-Iacovoni F, Coronas S, Manenti S, Gratacap MP, Plantavid M, Payrastre B (2005) Emerging roles of phosphatidylinositol monophosphates in cellular signaling and trafficking. Adv Enzyme Regul 45:201–214

    Article  CAS  PubMed  Google Scholar 

  • Peters NC, Berg CA (2016) Dynamin-mediated endocytosis is required for tube closure, cell intercalation, and biased apical expansion during epithelial tubulogenesis in the Drosophila ovary. Dev Biol 409(1):39–54

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro EM, Montell DJ (2004) Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131(21):5243–5251

    Article  CAS  PubMed  Google Scholar 

  • Riechmann V, Ephrussi A (2001) Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 11(4):374–383

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rorth P (2002) Initiating and guiding migration: lessons from border cells. Trends Cell Biol 12(7):325–331

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Lynch JA (2009) Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol 1(2):a001891

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth S, Neuman-Silberberg FS, Barcelo G, Schupbach T (1995) Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81(6):967–978

    Article  CAS  PubMed  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90(1):259–289

    Article  CAS  PubMed  Google Scholar 

  • Schink KO, Tan KW, Stenmark H (2016) Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol 32:143–171

    Article  CAS  PubMed  Google Scholar 

  • Shewan A, Eastburn DJ, Mostov K (2011) Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol 3(8):a004796

    Article  PubMed  PubMed Central  Google Scholar 

  • Spradling A (1993) Developmental genetics of oogenesis. In: Martinez-Arias B (ed) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, New York, pp 1–70

    Google Scholar 

  • St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6(5):363–375

    Article  CAS  PubMed  Google Scholar 

  • St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: parallels and diversity. Cell 141(5):757–774

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Oh K, Burgess J, Hipfner DR, Brill JA (2014) PI4KIIIalpha is required for cortical integrity and cell polarity during Drosophila oogenesis. J Cell Sci 127(Pt 5):954–966

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Thapa N, Choi S, Anderson RA (2015) Emerging roles of PtdIns(4,5)P2—beyond the plasma membrane. J Cell Sci 128(22):4047–4056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28:655–685

    Article  CAS  PubMed  Google Scholar 

  • Villanyi Z, Debec A, Timinszky G, Tirian L, Szabad J (2008) Long persistence of importin-beta explains extended survival of cells and zygotes that lack the encoding gene. Mech Dev 125(3-4):196–206

    Article  CAS  PubMed  Google Scholar 

  • von Stein W, Ramrath A, Grimm A, Muller-Borg M, Wodarz A (2005) Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132(7):1675–1686

    Article  Google Scholar 

  • Wang J, Richards DA (2012) Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open 1(9):857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M (2007) PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28(5):886–898

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Takeo S, Florens L, Hughes SE, Huo LJ, Gilliland WD, Swanson SK, Teeter K, Schwartz JW, Washburn MP et al (2007) The inhibition of polo kinase by matrimony maintains G2 arrest in the meiotic cell cycle. PLoS Biol 5(12):e323

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Mao YS, Janmey PA, Yin HL (2012) Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem 59:177–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Catherine Jackson and Jean-Antoine Lepesant for comments on the manuscript and the Association pour la Recherche sur le Cancer (grant PJA 20161204931) for funding our research on the relationship between PIPs and polarity proteins.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Claret or Antoine Guichet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jouette, J., Claret, S., Guichet, A. (2017). Phosphoinositides and Cell Polarity in the Drosophila Egg Chamber. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_8

Download citation

Publish with us

Policies and ethics