Skip to main content

The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte

  • Chapter
  • First Online:
Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

Abstract

Messenger RNA (mRNA) localization is a powerful and prevalent mechanism of post-transcriptional gene regulation, enabling the cell to produce protein at the exact location at which it is needed. The phenomenon of mRNA localization has been observed in many types of cells in organisms ranging from yeast to man. Thus, the process appears to be widespread and highly conserved. Several model systems have been used to understand the mechanism by which mRNAs are localized. One such model, and the focus of this chapter, is the egg chamber of the female Drosophila melanogaster. The polarity of the developing Drosophila oocyte and resulting embryo relies on the specific localization of three critical mRNAs: gurken, bicoid, and oskar. If these mRNAs are not localized during oogenesis, the resulting progeny will not survive. The study of these mRNAs has served as a model for understanding the general mechanisms by which mRNAs are sorted. In this chapter, we will discuss how the localization of these mRNAs enables polarity establishment. We will also discuss the role of motor proteins in the localization pathway. Finally, we will consider potential mechanisms by which mRNAs can be anchored at their site of localization. It is likely that the lessons learned using the Drosophila oocyte model system will be applicable to mRNAs that are localized in other organisms as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bcd :

bicoid

dhc :

Dynein heavy chain

egl :

Egalitarian

grk :

gurken

khc :

Kinesin heavy chain

klc :

Kinesin light chain

osk :

oskar

RNP:

Ribonucleoprotein

tm1 :

Tropomyosin1

References

  • Ables ET (2015) Drosophila oocytes as a model for understanding meiosis: an educational primer to accompany “corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila”. Genetics 199:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu K, Cai Y, Bahri S, Yang X, Chia W (2004) Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes. Genes Dev 18:138–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci USA 98:7025–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7:1749–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  CAS  PubMed  Google Scholar 

  • Bilinski SM, Jaglarz MK, Tworzydlo W (2017) The pole (germ) plasm in insect oocytes. In: Kloc M (ed) Oocytes. Springer, Heidelberg

    Google Scholar 

  • Bohl F, Kruse C, Frank A, Ferring D, Jansen RP (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19:5514–5524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brendza KM, Rose DJ, Gilbert SP, Saxton WM (1999) Lethal kinesin mutations reveal amino acids important for ATPase activation and structural coupling. J Biol Chem 274:31506–31514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brendza RP, Serbus LR, Duffy JB, Saxton WM (2000) A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289:2120–2122

    Google Scholar 

  • Brendza RP, Serbus LR, Saxton WM, Duffy JB (2002) Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes. Curr Biol 12:1541–1545

    Google Scholar 

  • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16:95–109

    Article  CAS  PubMed  Google Scholar 

  • Caceres L, Nilson LA (2005) Production of gurken in the nurse cells is sufficient for axis determination in the Drosophila oocyte. Development 132:2345–2353

    Article  CAS  PubMed  Google Scholar 

  • Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha BJ, Koppetsch BS, Theurkauf WE (2001) In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106:35–46

    Article  CAS  PubMed  Google Scholar 

  • Clark I, Giniger E, Ruohola-Baker H, Jan LY, Jan YN (1994) Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr Biol 4:289–300

    Article  CAS  PubMed  Google Scholar 

  • Clark IE, Jan LY, Jan YN (1997) Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 124:461–470

    CAS  PubMed  Google Scholar 

  • Clark A, Meignin C, Davis I (2007) A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 134:1955–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlgaard K, Raposo AA, Niccoli T, St Johnston D (2007) Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell 13:539–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delanoue R, Herpers B, Soetaert J, Davis I, Rabouille C (2007) Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies. Dev Cell 13:523–538

    Article  CAS  PubMed  Google Scholar 

  • Dienstbier M, Boehl F, Li X, Bullock SL (2009) Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev 23:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan JE, Warrior R (2002) The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr Biol 12:1982–1991

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50

    Article  CAS  PubMed  Google Scholar 

  • Erdelyi M, Michon AM, Guichet A, Glotzer JB, Ephrussi A (1995) Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377:524–527

    Article  CAS  PubMed  Google Scholar 

  • Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Galjart N (2010) Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 20:R528–R537

    Article  CAS  PubMed  Google Scholar 

  • Gaspar I, Sysoev V, Komissarov A, Ephrussi A (2016) An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 36(3):319–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavis ER, Lehmann R (1992) Localization of nanos RNA controls embryonic polarity. Cell 71:301–313

    Article  CAS  PubMed  Google Scholar 

  • Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, Moore MJ (2007) The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130:179–191

    Article  CAS  PubMed  Google Scholar 

  • Glotzer JB, Saffrich R, Glotzer M, Ephrussi A (1997) Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr Biol 7:326–337

    Article  CAS  PubMed  Google Scholar 

  • Gonsalvez GB, Urbinati CR, Long RM (2005) RNA localization in yeast: moving towards a mechanism. Biol Cell 97:75–86

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, Elliott H, St Johnston D (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375:654–658

    Article  CAS  PubMed  Google Scholar 

  • Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP (2015) Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 128:2965–2974

    Article  CAS  PubMed  Google Scholar 

  • Heraud-Farlow JE, Kiebler MA (2014) The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity. Trends Neurosci 37:470–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  CAS  PubMed  Google Scholar 

  • Jambor H, Mueller S, Bullock SL, Ephrussi A (2014) A stem-loop structure directs oskar mRNA to microtubule minus ends. RNA 20:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P (2015) Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. Elife 4. doi:10.7554/eLife.05003

  • Jankovics F, Sinka R, Lukacsovich T, Erdelyi M (2002) MOESIN crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Curr Biol 12:2060–2065

    Article  CAS  PubMed  Google Scholar 

  • Januschke J, Gervais L, Dass S, Kaltschmidt JA, Lopez-Schier H, St Johnston D, Brand AH, Roth S, Guichet A (2002) Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr Biol 12:1971–1981

    Article  CAS  PubMed  Google Scholar 

  • Jeske M, Bordi M, Glatt S, Muller S, Rybin V, Muller CW, Ephrussi A (2015) The crystal structure of the Drosophila germline inducer oskar identifies two Domains with distinct Vasa helicase- and RNA-binding activities. Cell Rep 12:587–598

    Article  CAS  PubMed  Google Scholar 

  • Jolly AL, Gelfand VI (2010) Cytoplasmic microtubule sliding: an unconventional function of conventional kinesin. Commun Integr Biol 3:589–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Jolly AL, Gelfand VI (2011) Bidirectional intracellular transport: utility and mechanism. Biochem Soc Trans 39:1126–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly AL, Kim H, Srinivasan D, Lakonishok M, Larson AG, Gelfand VI (2010) Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc Natl Acad Sci USA 107:12151–12156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87:492–506

    Article  CAS  PubMed  Google Scholar 

  • Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10:854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim-Ha J, Smith JL, Macdonald PM (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23–35

    Article  CAS  PubMed  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81:403–412

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Zearfoss NR, Etkin LD (2002) Mechanisms of subcellular mRNA localization. Cell 108:533–544

    Article  CAS  PubMed  Google Scholar 

  • Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A (2009) Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Curr Biol 19:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR (2005) Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JB, Singer RH (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45:407–415

    Article  CAS  PubMed  Google Scholar 

  • Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Sanghavi P, Bollinger KE, Perry L, Marshall B, Roon P, Tanaka T, Nakamura A, Gonsalvez GB (2015) Efficient endocytic uptake and maturation in Drosophila oocytes requires Dynamitin/p50. Genetics 201:631–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau P, Davies T, Williams LS, Mishima M, Palacios IM (2010) Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility. Development 137:2763–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP (1997) Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277:383–387

    Article  CAS  PubMed  Google Scholar 

  • Long RM, Gu W, Lorimer E, Singer RH, Chartrand P (2000) She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J 19:6592–6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Winding M, Lakonishok M, Wildonger J, Gelfand VI (2016) Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. Proc Natl Acad Sci USA 113:E4995–E5004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luders J, Stearns T (2007) Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8:161–167

    Article  PubMed  Google Scholar 

  • MacDougall N, Clark A, MacDougall E, Davis I (2003) Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev Cell 4:307–319

    Article  CAS  PubMed  Google Scholar 

  • Markussen FH, Michon AM, Breitwieser W, Ephrussi A (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121:3723–3732

    CAS  PubMed  Google Scholar 

  • Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrail M, Hays TS (1997) The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124:2409–2419

    CAS  PubMed  Google Scholar 

  • Medioni C, Mowry K, Besse F (2012) Principles and roles of mRNA localization in animal development. Development 139:3263–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mili S, Moissoglu K, Macara IG (2008) Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mische S, Li M, Serr M, Hays TS (2007) Direct observation of regulated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mol Biol Cell 18:2254–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman-Silberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Neuman-Silberberg FS, Schupbach T (1996) The Drosophila TGF-alpha-like protein Gurken: expression and cellular localization during Drosophila oogenesis. Mech Dev 59:105–113

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Houston DW (2017) RNA localization in the vertebrate oocyte: establishment of oocyte polarity and localized mRNA assemblages. In: Kloc M (ed) Oocytes. Springer, Heidelberg

    Google Scholar 

  • Palacios IM, St Johnston D (2002) Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129:5473–5485

    Article  CAS  PubMed  Google Scholar 

  • Parton RM, Hamilton RS, Ball G, Yang L, Cullen CF, Lu W, Ohkura H, Davis I (2011) A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J Cell Biol 194:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polesello C, Delon I, Valenti P, Ferrer P, Payre F (2002) Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 4:782–789

    Article  CAS  PubMed  Google Scholar 

  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85

    Article  CAS  PubMed  Google Scholar 

  • Quinlan ME (2016) Cytoplasmic streaming in the Drosophila oocyte. Annu Rev Cell Dev Biol 32:173–195

    Article  CAS  PubMed  Google Scholar 

  • Quinlan ME, Hilgert S, Bedrossian A, Mullins RD, Kerkhoff E (2007) Regulatory interactions between two actin nucleators, Spire and Cappuccino. J Cell Biol 179:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rom I, Faicevici A, Almog O, Neuman-Silberberg FS (2007) Drosophila Dynein light chain (DDLC1) binds to gurken mRNA and is required for its localization. Biochim Biophys Acta 1773:1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Neuman-Silberberg FS, Barcelo G, Schupbach T (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81:967–978

    Article  CAS  PubMed  Google Scholar 

  • Sanghavi P, Lu S, Gonsalvez GB (2012) A functional link between localized Oskar, dynamic microtubules, and endocytosis. Dev Biol 367:66–77

    Article  CAS  PubMed  Google Scholar 

  • Sanghavi P, Laxani S, Li X, Bullock SL, Gonsalvez GB (2013) Dynein associates with oskar mRNPs and is required for their efficient net plus-end localization in Drosophila oocytes. PLoS One 8:e80605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanghavi P, Liu G, Veeranan-Karmegam R, Navarro C, Gonsalvez GB (2016) Multiple roles for Egalitarian in polarization of the Drosophila egg chamber. Genetics 203(1):415–432

    Google Scholar 

  • Saunders C, Cohen RS (1999) The role of oocyte transcription, the 5′UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol Cell 3:43–54

    Article  CAS  PubMed  Google Scholar 

  • Schnorrer F, Luschnig S, Koch I, Nusslein-Volhard C (2002) Gamma-tubulin37C and gamma-tubulin ring complex protein 75 are essential for bicoid RNA localization during drosophila oogenesis. Dev Cell 3:685–696

    Article  CAS  PubMed  Google Scholar 

  • Serbus LR, Cha BJ, Theurkauf WE, Saxton WM (2005) Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development 132:3743–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sil A, Herskowitz I (1996) Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84:711–722

    Article  CAS  PubMed  Google Scholar 

  • Singer-Kruger B, Jansen RP (2014) Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 11:1031–1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JL, Wilson JE, Macdonald PM (1992) Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70:849–859

    Article  CAS  PubMed  Google Scholar 

  • Spradling AC (1993) Developmental genetics of oogenesis. In: Michael Bate AMA (ed) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  CAS  PubMed  Google Scholar 

  • Steinhauer J, Kalderon D (2006) Microtubule polarity and axis formation in the Drosophila oocyte. Dev Dyn 235:1455–1468

    Article  CAS  PubMed  Google Scholar 

  • Swan A, Nguyen T, Suter B (1999) Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1:444–449

    Article  CAS  PubMed  Google Scholar 

  • Takizawa PA, Vale RD (2000) The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci USA 97:5273–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa PA, Sil A, Swedlow JR, Herskowitz I, Vale RD (1997) Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389:90–93

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Nakamura A (2008) The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development 135:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Theurkauf WE (1994) Microtubules and cytoplasm organization during Drosophila oogenesis. Dev Biol 165:352–360

    Article  CAS  PubMed  Google Scholar 

  • Theurkauf WE, Hazelrigg TI (1998) In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development 125:3655–3666

    Google Scholar 

  • Trovisco V, Belaya K, Nashchekin D, Irion U, Sirinakis G, Butler R, Lee JJ, Gavis ER, St Johnston D (2016) bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. elife 5:e17537

    Google Scholar 

  • Vanzo NF, Ephrussi A (2002) Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129:3705–3714

    CAS  PubMed  Google Scholar 

  • Vanzo N, Oprins A, Xanthakis D, Ephrussi A, Rabouille C (2007) Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Dev Cell 12:543–555

    Google Scholar 

  • Veeranan-Karmegam R, Boggupalli DP, Liu G, Gonsalvez GB (2016) A new isoform of Drosophila non-muscle Tropomyosin 1 interacts with Kinesin-1 and functions in oskar mRNA localization. J Cell Sci 129:4252–4264

    Article  CAS  PubMed  Google Scholar 

  • Weil TT, Forrest KM, Gavis ER (2006) Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell 11:251–262

    Article  CAS  PubMed  Google Scholar 

  • Wilk R, Hu J, Blotsky D, Krause HM (2016) Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes Dev 30:594–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaessinger S, Busseau I, Simonelig M (2006) Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133:4573–4583

    Article  CAS  PubMed  Google Scholar 

  • Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to members of the Gonsalvez lab for critical reading and input on this manuscript. Projects on mRNA localization and microtubule motors in the Gonsalvez lab are supported by a grant from the National Institutes of Health (R01GM100088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graydon B. Gonsalvez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goldman, C.H., Gonsalvez, G.B. (2017). The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_7

Download citation

Publish with us

Policies and ethics