Skip to main content

Acquisition of Oocyte Polarity

  • Chapter
  • First Online:
Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

Abstract

Acquisition of oocyte polarity involves complex translocation and aggregation of intracellular organelles, RNAs, and proteins, along with strict posttranscriptional regulation. While much is still unknown regarding the formation of the animal-vegetal axis, an early marker of polarity, animal models have contributed to our understanding of these early processes controlling normal oogenesis and embryo development. In recent years, it has become clear that proteins with self-assembling properties are involved in assembling discrete subcellular compartments or domains underlying subcellular asymmetries in the early mitotic and meiotic cells of the female germline. These include asymmetries in duplication of the centrioles and formation of centrosomes and assembly of the organelle and RNA-rich Balbiani body, which plays a critical role in oocyte polarity. Notably, at specific stages of germline development, these transient structures in oocytes are temporally coincident and align with asymmetries in the position and arrangement of nuclear components, such as the nuclear pore and the chromosomal bouquet and the centrioles and cytoskeleton in the cytoplasm. Formation of these critical, transient structures and arrangements involves microtubule pathways, intrinsically disordered proteins (proteins with domains that tend to be fluid or lack a rigid ordered three-dimensional structure ranging from random coils, globular domains, to completely unstructured proteins), and translational repressors and activators. This review aims to examine recent literature and key players in oocyte polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

γ-Tub:

Gamma-tubulin

Ana1:

Anastral spindle 1

AnVg:

Animal-vegetal axis

Asl:

Asterless

Bb:

Balbiani body

Bcd:

Bicoid

BRE:

Bruno response elements

Bru:

Bruno

Buc:

Bucky ball

Cep135:

Centrosomal protein of 135 kDa

Cnn:

Centrosomin

Cp110:

Centrosomal protein of 110 kDa

CPEB:

Cytoplasmic polyadenylation element binding protein

Dazl:

Deleted in azoospermia-like

Dplp:

Pericentrin-like protein

Glo:

Glorund

Grk:

Gurken

hnRNP:

Heterogeneous nuclear ribonucleoprotein

HTS:

Huli-tai-shao

IDR:

Intrinsically disordered proteins

INM:

Inner nuclear membrane

KASH:

Klarsicht, ANC-1, and Syne homology

KR rich:

Lysine/arginine rich

LINC:

Linker of the nucleoskeleton and cytoskeleton

Macf1:

Microtubule actin cross-linking factor 1

METRO:

Messenger transport organizer

Mgn:

Magellan

MT:

Microtubules

MTOC:

Microtubule organizing center

NE:

Nuclear envelope

Nos:

Nanos

NP:

Nuclear pore

NRE:

Nanos response elements

ONM:

Outer nuclear membrane

Orb:

oo18 RNA binding protein

Osk:

Oskar

P bodies:

Processing bodies

PCM:

Pericentriolar material

PGC:

Primordial germ cells

piRNA:

Piwi-interacting RNA

PLD:

Prion-like domain

Plk4:

Polo-like kinase 4

Plp:

Pericentrin-like protein

Pum:

Pumilio

Rbpms2:

RNA binding protein with multiple splice isoforms 2

RNAbps:

RNA binding proteins

RNP:

Ribonucleoprotein

Sas-4:

Something about silencing 4

Sas-5:

Something about silencing 5

Sas-6:

Something about silencing 6

Smg:

Smaug

Spd-2:

Spindle-defective protein 2

SRE:

Smaug response elements

STIL:

SCL/TAL1 interrupting locus

SUN:

UNC-84

TCE:

Translational control element

TGF-α:

Transforming growth factor alpha

Xvelo:

Vegetally localized

References

  • Alsheimer M, Benavente R (1996) Change of karyoskeleton during mammalian spermatogenesis: expression pattern of nuclear lamin C2 and its regulation. Exp Cell Res 228:181–188

    Article  CAS  PubMed  Google Scholar 

  • Applewhite DA, Grode KD, Duncan MC, Rogers SL (2013) The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell 24:2885–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestra FR, Strnad P, Fluckiger I, Gonczy P (2013) Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Dev Cell 25:555–571

    Article  CAS  PubMed  Google Scholar 

  • Boke E, Ruer M, Wuhr M, Coughlin M, Lemaitre R, Gygi SP, Alberti S, Drechsel D, Hyman AA, Mitchison TJ (2016) Amyloid-like self-assembly of a cellular compartment. Cell 166:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolivar J, Huynh JR, Lopez-Schier H, Gonzalez C, St Johnston D, Gonzalez-Reyes A (2001) Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton. Development 128:1889–1897

    CAS  PubMed  Google Scholar 

  • Bontems F, Stein A, Marlow F, Lyautey J, Gupta T, Mullins MC, Dosch R (2009) Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 19:414–422

    Article  CAS  PubMed  Google Scholar 

  • Bornens M (2012) The centrosome in cells and organisms. Science 335:422–426

    Article  CAS  PubMed  Google Scholar 

  • Brendza RP, Serbus LR, Duffy JB, Saxton WM (2000) A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289:2120–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell PD, Chao JA, Singer RH, Marlow FL (2015a) Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development 142:1368–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell PD, Heim AE, Smith MZ, Marlow FL (2015b) Kinesin-1 interacts with Bucky ball to form germ cells and is required to pattern the zebrafish body axis. Development 142:2996–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castagnetti S, Ephrussi A (2003) Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte. Development 130:835–843

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Tan L, Schedl P (1999) The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev Biol 215:91–106

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Tan L, Wolf MR, Schedl P (2001) Functioning of the Drosophila orb gene in gurken mRNA localization and translation. Development 128:3169–3177

    CAS  PubMed  Google Scholar 

  • Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML (2004) Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol Biol Cell 15:4669–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekulaeva M, Hentze MW, Ephrussi A (2006) Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 124:521–533

    Article  CAS  PubMed  Google Scholar 

  • Chen HJ, Lin CM, Lin CS, Perez-Olle R, Leung CL, Liem RK (2006) The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev 20:1933–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–273

    Article  CAS  PubMed  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    Article  CAS  PubMed  Google Scholar 

  • Church K (1976) Arrangement of chromosome ends and axial core formation during early meiotic prophase in the male grasshopper Brachystola magna by 3D, E.M. reconstruction. Chromosoma 58:365–376

    Article  CAS  PubMed  Google Scholar 

  • Clark A, Meignin C, Davis I (2007) A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 134:1955–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claussen M, Pieler T (2004) Xvelo1 uses a novel 75-nucleotide signal sequence that drives vegetal localization along the late pathway in Xenopus oocytes. Dev Biol 266:270–284

    Article  CAS  PubMed  Google Scholar 

  • Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK (2005) The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 24:2656–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad MN, Dominguez AM, Dresser ME (1997) Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276:1252–1255

    Article  CAS  PubMed  Google Scholar 

  • Conrad MN, Lee CY, Chao G, Shinohara M, Kosaka H, Shinohara A, Conchello JA, Dresser ME (2008) Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392:828–831

    Article  CAS  PubMed  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2002) Reorganization and polarization of the meiotic bouquet-stage cell can be uncoupled from telomere clustering. J Cell Sci 115:3757–3766

    Article  CAS  PubMed  Google Scholar 

  • Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431:92–96

    Article  CAS  PubMed  Google Scholar 

  • Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590

    Article  CAS  PubMed  Google Scholar 

  • Cox RT, Spradling AC (2006) Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 133:3371–3377

    Article  CAS  PubMed  Google Scholar 

  • Dahanukar A, Walker JA, Wharton RP (1999) Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol Cell 4:209–218

    Article  CAS  PubMed  Google Scholar 

  • Davidson A, Parton RM, Rabouille C, Weil TT, Davis I (2016) Localized translation of gurken/TGF-alpha mRNA during axis specification is controlled by access to Orb/CPEB on processing bodies. Cell Rep 14:2451–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Cuevas M, Spradling AC (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125:2781–2789

    CAS  PubMed  Google Scholar 

  • Dienstbier M, Boehl F, Li X, Bullock SL (2009) Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev 23:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding DQ, Yamamoto A, Haraguchi T, Hiraoka Y (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6:329–341

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872

    Article  CAS  PubMed  Google Scholar 

  • Dix CI, Raff JW (2007) Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr Biol 17:1759–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosch R, Wagner DS, Mintzer KA, Runke G, Wiemelt AP, Mullins MC (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6:771–780

    Article  CAS  PubMed  Google Scholar 

  • Draper BW, Mccallum CM, Moens CB (2007) nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkouby YM, Jamieson-Lucy A, Mullins MC (2016) Oocyte polarization is coupled to the chromosomal bouquet, a conserved polarized nuclear configuration in meiosis. PLoS Biol 14:e1002335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enjolras C, Thomas J, Chhin B, Cortier E, Duteyrat JL, Soulavie F, Kernan MJ, Laurencon A, Durand B (2012) Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. J Cell Biol 197:313–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdelyi M, Michon AM, Guichet A, Glotzer JB, Ephrussi A (1995) Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377:524–527

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Glover DM (2012) Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furukawa K, Hotta Y (1993) cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12:97–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamberi C, Peterson DS, He L, Gottlieb E (2002) An anterior function for the Drosophila posterior determinant Pumilio. Development 129:2699–2710

    CAS  PubMed  Google Scholar 

  • Gaspar I, Sysoev V, Komissarov A, Ephrussi A (2016) An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 36(3):319–333

    Google Scholar 

  • Gavis ER, Lehmann R (1992) Localization of nanos RNA controls embryonic polarity. Cell 71:301–313

    Article  CAS  PubMed  Google Scholar 

  • Gavis ER, Lehmann R (1994) Translational regulation of nanos by RNA localization. Nature 369:315–318

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Marchand V, Gaspar I, Ephrussi A (2012) Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol 19:441–449

    Article  CAS  PubMed  Google Scholar 

  • Giansanti MG, Bucciarelli E, Bonaccorsi S, Gatti M (2008) Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr Biol 18:303–309

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, Elliott H, St Johnston D (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375:654–658

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, St. Johnston D (1994) Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science 266:639–642

    Article  CAS  PubMed  Google Scholar 

  • Gregory SL, Brown NH (1998) kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J Cell Biol 143:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross-Thebing T, Paksa A, Raz E (2014) Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biol 12:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta T, Marlow FL, Ferriola D, Mackiewicz K, Dapprich J, Monos D, Mullins MC (2010) Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 6:e1001073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hake LE, Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79:617–627

    Article  CAS  PubMed  Google Scholar 

  • Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155:1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung O, Marlow F (2014) Get it together: how RNA-binding proteins assemble and regulate germ plasm in the oocyte and embryo. Nova Science, New York

    Google Scholar 

  • Heim AE, Hartung O, Rothhamel S, Ferreira E, Jenny A, Marlow FL (2014) Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 141:842–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraoka T, Fuchikawa Y (1993) An electronmicroscopic and morphometric analysis on the cell polarity in the synaptic stage of meiosis. Cytologia 58:77–84

    Article  Google Scholar 

  • Holm PB (1977) Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (thunb.) Carlsberg Res Commun 42:103

    Article  Google Scholar 

  • Houston DW, King ML (2000) A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127:447–456

    CAS  PubMed  Google Scholar 

  • Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M, Lehmann R (2016) Long Oskar controls mitochondrial inheritance in Drosophila melanogaster. Dev Cell 39:560–571

    Article  CAS  PubMed  Google Scholar 

  • Huynh JR, St Johnston D (2000) The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 127:2785–2794

    CAS  PubMed  Google Scholar 

  • Huynh JR, St Johnston D (2004) The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 14:R438–R449

    Article  CAS  PubMed  Google Scholar 

  • Jambor H, Mueller S, Bullock SL, Ephrussi A (2014) A stem-loop structure directs oskar mRNA to microtubule minus ends. RNA 20:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenny A, Hachet O, Zavorszky P, Cyrklaff A, Weston MD, Johnston DS, Erdelyi M, Ephrussi A (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133:2827–2833

    Article  CAS  PubMed  Google Scholar 

  • Jeske M, Bordi M, Glatt S, Muller S, Rybin V, Muller CW, Ephrussi A (2015) The crystal structure of the Drosophila germline inducer Oskar identifies two domains with distinct vasa helicase- and RNA-binding activities. Cell Rep 12:587–598

    Article  CAS  PubMed  Google Scholar 

  • Jeske M, Moritz B, Anders A, Wahle E (2011) Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels. EMBO J 30:90–103

    Article  CAS  PubMed  Google Scholar 

  • Kemp CA, Kopish KR, Zipperlen P, Ahringer J, O’Connell KF (2004) Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell 6:511–523

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Pai CI, Sato K, Person MD, Nakamura A, Macdonald PM (2015) Region-specific activation of oskar mRNA translation by inhibition of Bruno-mediated repression. PLoS Genet 11:e1004992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S, Rhee K (2014) Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis. PLoS One 9:e87016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81:403–412

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat MC, Fluckiger I, Gonczy P, Steinmetz MO (2011) Structural basis of the 9-fold symmetry of centrioles. Cell 144:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004a) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266:43–61

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Bilinski S, Etkin LD (2004b) The Balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Dougherty MT, Bilinski S, Chan AP, Brey E, King ML, Patrick CW Jr, Etkin LD (2002) Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus. Dev Biol 241:79–93

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Etkin LD (2005) RNA localization mechanisms in oocytes. J Cell Sci 118:269–282

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Ghobrial RM, Borsuk E, Kubiak JZ (2012) Polarity and asymmetry during mouse oogenesis and oocyte maturation. Results Probl Cell Differ 55:23–44

    Article  PubMed  Google Scholar 

  • Kloc M, Jaglarz M, Dougherty M, Stewart MD, Nel-Themaat L, Bilinski S (2008) Mouse early oocytes are transiently polar: three-dimensional and ultrastructural analysis. Exp Cell Res 314:3245–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka K, Kawakami K, Sakamoto H, Inoue K (2007) Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech Dev 124:279–289

    Article  CAS  PubMed  Google Scholar 

  • Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Laver JD, Marsolais AJ, Smibert CA, Lipshitz HD (2015) Regulation and function of maternal gene products during the maternal-to-zygotic transition in Drosophila. Curr Top Dev Biol 113:43–84

    Article  PubMed  Google Scholar 

  • Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Le Good JA, Joubin K, Giraldez AJ, Ben-Haim N, Beck S, Chen Y, Schier AF, Constam DB (2005) Nodal stability determines signaling range. Curr Biol 15:31–36

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee S, Chen C, Shim H, Kim-Ha J (2016) shot regulates the microtubule reorganization required for localization of axis-determining mRNAs during oogenesis. FEBS Lett 590:431–444

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Rhee K (2011) PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol 195:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Harris KL, Whitington PM, Kolodziej PA (2000) Short stop is allelic to kakapo, and encodes rod-like cytoskeletal-associated proteins required for axon extension. J Neurosci 20:1096–1108

    CAS  PubMed  Google Scholar 

  • Lee SH, Somlo S (2014) Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res Clin Pract 33:73–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann R (2016) Germ plasm biogenesis--an Oskar-centric perspective. Curr Top Dev Biol 116:679–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Mcgrail M, Serr M, Hays TS (1994) Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte. J Cell Biol 126:1475–1494

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Spradling AC (1995) Fusome asymmetry and oocyte determination in Drosophila. Dev Genet 16:6–12

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Yue L, Spradling AC (1994) The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120:947–956

    CAS  PubMed  Google Scholar 

  • Little SC, Sinsimer KS, Lee JJ, Wieschaus EF, Gavis ER (2015) Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17:558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau P, Davies T, Williams LS, Mishima M, Palacios IM (2010) Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility. Development 137:2763–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdougall N, Clark A, Macdougall E, Davis I (2003) Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev Cell 4:307–319

    Article  CAS  PubMed  Google Scholar 

  • Mach JM, Lehmann R (1997) An Egalitarian-BicaudalD complex is essential for oocyte specification and axis determination in Drosophila. Genes Dev 11:423–435

    Article  CAS  PubMed  Google Scholar 

  • Maegawa S, Yamashita M, Yasuda K, Inoue K (2002) Zebrafish DAZ-like protein controls translation via the sequence ‘GUUC’. Genes Cells 7:971–984

    Article  CAS  PubMed  Google Scholar 

  • Markussen FH, Michon AM, Breitwieser W, Ephrussi A (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121:3723–3732

    CAS  PubMed  Google Scholar 

  • Marlow F (2015) Primordial germ cell specification and migration. F1000Res 4

    Google Scholar 

  • Marlow FL (2010) Maternal control of development in vertebrates: my mother made me do it! Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  • Marlow FL, Mullins MC (2008) Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 321:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maro B, Howlett SK, Webb M (1985) Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol 101:1665–1672

    Article  CAS  PubMed  Google Scholar 

  • Martin-Castellanos C, Blanco M, Rozalen AE, Perez-Hidalgo L, Garcia AI, Conde F, Mata J, Ellermeier C, Davis L, San-Segundo P, Smith GR, Moreno S (2005) A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr Biol 15:2056–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcgrail M, Hays TS (1997) The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124:2409–2419

    CAS  PubMed  Google Scholar 

  • Mckee BD (2004) Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim Biophys Acta 1677:165–180

    Article  CAS  PubMed  Google Scholar 

  • Mennella V, Keszthelyi B, Mcdonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14:1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messinger SM, Albertini DF (1991) Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J Cell Sci 100(Pt 2):289–298

    PubMed  Google Scholar 

  • Micklem DR, Adams J, Grunert S, St Johnston D (2000) Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J 19:1366–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mische S, Li M, Serr M, Hays TS (2007) Direct observation of regulated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mol Biol Cell 18:2254–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moens PB (1969) The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma 28:1–25

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Amikura R, Hanyu K, Kobayashi S (2001) Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128:3233–3242

    CAS  PubMed  Google Scholar 

  • Nakamura A, Sato K, Hanyu-Nakamura K (2004) Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6:69–78

    Article  CAS  PubMed  Google Scholar 

  • Nashchekin D, Fernandes AR, St Johnston D (2016) Patronin/shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev Cell 38:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro C, Puthalakath H, Adams JM, Strasser A, Lehmann R (2004) Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nat Cell Biol 6:427–435

    Article  CAS  PubMed  Google Scholar 

  • Neuman-Silberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Neuman-Silberberg FS, Schupbach T (1996) The Drosophila TGF-alpha-like protein Gurken: expression and cellular localization during Drosophila oogenesis. Mech Dev 59:105–113

    Article  CAS  PubMed  Google Scholar 

  • Nijjar S, Woodland HR (2013) Protein interactions in Xenopus germ plasm RNP particles. PLoS One 8:e80077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392:825–828

    Article  CAS  PubMed  Google Scholar 

  • Niwa O, Shimanuki M, Miki F (2000) Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J 19:3831–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norvell A, Wong J, Randolph K, Thompson L (2015) Wispy and Orb cooperate in the cytoplasmic polyadenylation of localized gurken mRNA. Dev Dyn 244:1276–1285

    Article  CAS  PubMed  Google Scholar 

  • O’Connell KF, Caron C, Kopish KR, Hurd DD, Kemphues KJ, Li Y, White JG (2001) The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105:547–558

    Article  PubMed  Google Scholar 

  • O’Connell KF, Maxwell KN, White JG (2000) The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev Biol 222:55–70

    Article  PubMed  Google Scholar 

  • Pelletier L, Ozlu N, Hannak E, Cowan C, Habermann B, Ruer M, Muller-Reichert T, Hyman AA (2004) The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr Biol 14:863–873

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SW, Holm PB (1978) Human meiosis II. Chromosome pairing and recombination nodules in human spermatocytes. Carlsb Res Commun 43:275

    Article  Google Scholar 

  • Reveal B, Yan N, Snee MJ, Pai CI, Gim Y, Macdonald PM (2010) BREs mediate both repression and activation of oskar mRNA translation and act in trans. Dev Cell 18:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roper K, Brown NH (2004) A spectraplakin is enriched on the fusome and organizes microtubules during oocyte specification in Drosophila. Curr Biol 14:99–110

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Neuman-Silberberg FS, Barcelo G, Schupbach T (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81:967–978

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Soriano N, Travis M, Dajas-Bailador F, Goncalves-Pimentel C, Whitmarsh AJ, Prokop A (2009) Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. J Cell Sci 122:2534–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherthan H, Jerratsch M, Li B, Smith S, Hulten M, Lock T, De Lange T (2000) Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol Biol Cell 11:4189–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serbus LR, Cha BJ, Theurkauf WE, Saxton WM (2005) Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development 132:3743–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skugor A, Tveiten H, Johnsen H, Andersen O (2016) Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl. BMC Evol Biol 16:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith A, Benavente R (1992) Identification of a short nuclear lamin protein selectively expressed during meiotic stages of rat spermatogenesis. Differentiation 52:55–60

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Wilson JE, Macdonald PM (1992) Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70:849–859

    Article  CAS  PubMed  Google Scholar 

  • Snee M, Benz D, Jen J, Macdonald PM (2008) Two distinct domains of Bruno bind specifically to the oskar mRNA. RNA Biol 5:1–9

    Article  PubMed  Google Scholar 

  • Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strumpf D, Volk T (1998) Kakapo, a novel cytoskeletal-associated protein is essential for the restricted localization of the neuregulin-like factor, vein, at the muscle-tendon junction site. J Cell Biol 143:1259–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugioka K, Hamill DR, Lowry JB, Mcneely ME, Enrick M, Richter AC, Kiebler LE, Priess JR, Bowerman B (2017) Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation. eLife 6:e25358

    Article  Google Scholar 

  • Swan A, Nguyen T, Suter B (1999) Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1:444–449

    Article  CAS  PubMed  Google Scholar 

  • Thio GL, Ray RP, Barcelo G, Schupbach T (2000) Localization of gurken RNA in Drosophila oogenesis requires elements in the 5′ and 3′ regions of the transcript. Dev Biol 221:435–446

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Cooper JP (2006) The meiotic chromosomal bouquet: SUN collects flowers. Cell 125(1):19–21

    Article  CAS  PubMed  Google Scholar 

  • Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R (2015) Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat Commun 6:7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tworzydlo W, Kisiel E, Jankowska W, Bilinski SM (2014) Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygotous” insect, Thermobia domestica. Zoology (Jena) 117:200–206

    Article  Google Scholar 

  • Tworzydlo W, Kisiel E, Jankowska W, Witwicka A, Bilinski SM (2016) Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia. Cell Tissue Res 366(1):191–201

    Google Scholar 

  • Tworzydlo W, Marek M, Kisiel E, Bilinski SM (2017) Meiosis, Balbiani body and early asymmetry of Thermobia oocyte. Protoplasma 254:649–655

    Article  PubMed  Google Scholar 

  • Vaccari T, Ephrussi A (2002) The fusome and microtubules enrich Par-1 in the oocyte, where it effects polarization in conjunction with Par-3, BicD, Egl, and dynein. Curr Biol 12:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, Johnson CM, Veprintsev D, Zuber B (2011) Structures of SAS-6 suggest its organization in centrioles. Science 331:1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Veeranan-Karmegam R, Boggupalli DP, Liu G, Gonsalvez GB (2016) A new isoform of Drosophila non-muscle Tropomyosin 1 interacts with Kinesin-1 and functions in oskar mRNA localization. J Cell Sci 129:4252–4264

    Article  CAS  PubMed  Google Scholar 

  • Vester B, Smith A, Krohne G, Benavente R (1993) Presence of a nuclear lamina in pachytene spermatocytes of the rat. J Cell Sci 104:557–563

    PubMed  Google Scholar 

  • Wang C, Lehmann R (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66:637–647

    Article  CAS  PubMed  Google Scholar 

  • Weil TT (2014) mRNA localization in the Drosophila germline. RNA Biol 11:1010–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Weil TT, Parton RM, Herpers B, Soetaert J, Veenendaal T, Xanthakis D, Dobbie IM, Halstead JM, Hayashi R, Rabouille C, Davis I (2012) Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 14:1305–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilding M, Carotenuto R, Infante V, Dale B, Marino M, Di Matteo L, Campanella C (2001a) Confocal microscopy analysis of the activity of mitochondria contained within the ‘mitochondrial cloud’ during oogenesis in Xenopus laevis. Zygote 9:347–352

    Article  CAS  PubMed  Google Scholar 

  • Wilding M, Dale B, Marino M, Di Matteo L, Alviggi C, Pisaturo ML, Lombardi L, De Placido G (2001b) Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 16:909–917

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm JE, Hilton M, Amos Q, Henzel WJ (2003) Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J Cell Biol 163:1197–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LC, Costa A, Mcleod I, Sarkeshik A, Yates J, Kyin S, Perlman D, Schedl P (2011) The functioning of the Drosophila CPEB protein Orb is regulated by phosphorylation and requires casein kinase 2 activity. PLoS One 6:e24355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LC, Schedl P (2011) Cup blocks the precocious activation of the orb autoregulatory loop. PLoS One 6:e28261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HY, Burgess SM (2006) Ndj1, a telomere-associated protein, promotes meiotic recombination in budding yeast. Mol Cell Biol 26:3683–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wueseke O, Bunkenborg J, Hein MY, Zinke A, Viscardi V, Woodruff JB, Oegema K, Mann M, Andersen JS, Hyman AA (2014) The Caenorhabditis elegans pericentriolar material components SPD-2 and SPD-5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Mol Biol Cell 25:2984–2992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yabe T, Ge X, Pelegri F (2007) The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev Biol 312:44–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Yu Z, Hu M, Wang M, Lehmann R, Xu RM (2015) Structure of Drosophila Oskar reveals a novel RNA binding protein. Proc Natl Acad Sci USA 112:11541–11546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Feldman JL (2015) SPD-2/CEP192 and CDK are limiting for microtubule-organizing center function at the centrosome. Curr Biol 25:1924–1931

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Katsuyama S, Tateho K, Nakamura H, Miyoshi J, Ohba T, Matsuhara H, Miki F, Okazaki K, Haraguchi T, Niwa O, Hiraoka Y, Yamamoto A (2013) Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. J Cell Biol 200:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Muller HA, Wodarz A, Ephrussi A (2004) PKA-R1 spatially restricts Oskar expression for Drosophila embryonic patterning. Development 131:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Yue L, Spradling AC (1992) hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev 6:2443–2454

    Article  CAS  PubMed  Google Scholar 

  • Zaessinger S, Busseau I, Simonelig M (2006) Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133:4573–4583

    Article  CAS  PubMed  Google Scholar 

  • Zhang YZ, Ouyang YC, Hou Y, Schatten H, Chen DY, Sun QY (2008) Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Develop Growth Differ 50:189–201

    Article  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32:619–697

    Article  CAS  PubMed  Google Scholar 

  • Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Alexa Clapp is supported by an Einstein REI fellowship. Research on oocyte polarity and the germline in the Marlow lab is supported by NIHR01GM089979 and start-up funds to FLM. We are grateful to Odelya Kaufman for the fun discussions and critical reading and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence L. Marlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Clapp, M., Marlow, F.L. (2017). Acquisition of Oocyte Polarity. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_4

Download citation

Publish with us

Policies and ethics