Advertisement

The Theoretical Basis for Neurocognitive Learning Therapy

  • Theodore Wasserman
  • Lori Drucker Wasserman
Chapter
  • 517 Downloads

Abstract

Recent research has made it increasingly clear that learning is based on changes in synaptic connections, and these changes in synaptic connections are effected by the products of specific genes which are expressed under specific conditions. Learning, therefore, is the product of a consistent and ongoing interaction between the individual’s experiences and their genetically derived predispositions. This interaction has been termed epigenetics. Epigenetics basically posits that behaviors and experience interact with physiological, cognitive, and emotional predispositions to produce current behavior. Available research suggests that current behavior reflects the accumulation of all these interactive events. A central premise of the NCLT model is that therapeutic learning impacts the organization of operation of the connectome and that the purpose of this reorganization is effective adaption and the automatization of the more adaptive response.

Keywords

Epigenetics Connectome Genome Core flexible networks Small world hubs Neurocognitive Learning Therapy 

References

  1. Achard, S., Salvador, R., Witcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72. doi: 10.1523/JNEUROSCI.3874-05.CrossRefPubMedGoogle Scholar
  2. Atzaba-Poria, N., Pike, A., & Deater-Deckard, K. (2004). Do risk factors for problem behaviour act in a cumulative manner? An examination of ethnic minority and majority children through an ecological perspective. Journal of Child Psychology and Psychiatry, 45(4), 707–718. doi: 10.1111/j.1469-7610.2004.00265.x.CrossRefPubMedGoogle Scholar
  3. Bar, R., & DeSouza, J. (2016). Tracking plasticity: effects of long term rehearsal in expert dancers encoding music to movement. PloS One, 11(1), e147732. doi: 10.1371/journal.pone.0147731.CrossRefGoogle Scholar
  4. Buehler, C., & Gerard, G. (2013). Cumulative family risk predicts increases in adjustment difficulties across early adolescence. Journal of Youth and Adolescence, 42(6), 905–920.CrossRefPubMedGoogle Scholar
  5. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. National Review of Neuroscience, 10(3), 186–198. doi: 10.1038/nrn2575.
  6. Callicott, J., Mattay, V., Bertolino, A., Finn, A., Coppola, R., Frank, J., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.CrossRefPubMedGoogle Scholar
  7. Carlson, R. A., & Lundy, D. H. (1992). Consistency and restructuring in cognitive procedural sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 127–141.Google Scholar
  8. Chess, S., & Thomas, A. B. (1967). Behavior problems revisited: Findings of an anterospective study. Journal of the American Academy of Child Psychiatry, 6(2), 321–331.CrossRefPubMedGoogle Scholar
  9. Cole, M., Reposv, G., & Anticivic, A. (2014). The frontoparietal control system: A central role in mental health. Neuroscientist, 20(6), 652–664. doi: 10.1177/1073858414525995.
  10. Elman, J. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48(1), 71–99.CrossRefPubMedGoogle Scholar
  11. Fields, D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neuroscience, 31(7), 361–370. doi: 10.1016/j.tins.2008.04.001.CrossRefGoogle Scholar
  12. Fields, D. (2010). Change in the Brain’s white matter the role of the brain’s white matter in active learning and memory may be underestimated. Science, 330, 768–769. doi: 10.1126/science.1199139.CrossRefPubMedPubMedCentralGoogle Scholar
  13. McClure, S., York, M., & Montague, P. (2004). The neural substrates of reward processing in humans: The modern role of fMRI. The Neuroscientist, 10(3), 260–268. doi: 10.1177/1073858404263526.CrossRefPubMedGoogle Scholar
  14. Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends in Cognitive Science, 17, 627–640. doi: 10.1016/j.tics.2013.09.015.CrossRefGoogle Scholar
  15. Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326. doi: 10.1037/0033-2909.132.2.297.CrossRefPubMedGoogle Scholar
  16. Nomi, J. S., Vij, S. G., Dajani, D. R., Steimke, R., Damaraju, E., Rachakonda, S., et al. (2017). Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage, 147, 861–871.CrossRefPubMedGoogle Scholar
  17. Rawson, K. (2010). Defining and investigating automaticity in reading. In B. Ross (Ed.), The psychology of learning and motivation (pp. 185–230). Burlington, NJ: Elsevier.CrossRefGoogle Scholar
  18. Rutter, M. (2006). Genes and behavior: Nature-nurture interplay explained. Malden, MA: Blackwell Publishing.Google Scholar
  19. Schmithorst, V., Wilke, M., Dardzinski, B., & Holland, S. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MR imaging study. Human Brain Mapping, 26(2), 139–147.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Shell, D., Brooks, D., Trainin, G., Wilson, K., Kauffman, D., & Herr, L. (2010). The unified learning model. New York: Springer.CrossRefGoogle Scholar
  21. Thiel, A., Thiel, J., Oddo, S., Langnickel, R., Brand, M. M., & Stirn, A. (2014). CD-patients with washing symptoms show a specific brain network when confronted with aggressive, sexual and disgusting stimuli. Neuropsychoanalysis. doi: 10.1080/15294145.2014.976649. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/15294145.2014.976649#.VHVnSMlRaU9.
  22. van den Heuvel, M., Mandl, R., & Hulshoff-Pol, H. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141. doi: 10.1002/hbm.20737.CrossRefPubMedGoogle Scholar
  23. Wasserman, T., & Wasserman, L. (2016). Depathologizing psychopathology. New York: Springer.CrossRefGoogle Scholar
  24. What is the connectome. (2014). Retrieved from The Brain Preservation Foundation: http://www.brainpreservation.org/content/connectome

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Theodore Wasserman
    • 1
  • Lori Drucker Wasserman
    • 1
  1. 1.Wasserman and Drucker PABoca RatonUSA

Personalised recommendations