Skip to main content

The Theoretical Basis for Neurocognitive Learning Therapy

  • Chapter
  • First Online:
Neurocognitive Learning Therapy: Theory and Practice

Abstract

Recent research has made it increasingly clear that learning is based on changes in synaptic connections, and these changes in synaptic connections are effected by the products of specific genes which are expressed under specific conditions. Learning, therefore, is the product of a consistent and ongoing interaction between the individual’s experiences and their genetically derived predispositions. This interaction has been termed epigenetics. Epigenetics basically posits that behaviors and experience interact with physiological, cognitive, and emotional predispositions to produce current behavior. Available research suggests that current behavior reflects the accumulation of all these interactive events. A central premise of the NCLT model is that therapeutic learning impacts the organization of operation of the connectome and that the purpose of this reorganization is effective adaption and the automatization of the more adaptive response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard, S., Salvador, R., Witcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72. doi:10.1523/JNEUROSCI.3874-05.

    Article  PubMed  Google Scholar 

  • Atzaba-Poria, N., Pike, A., & Deater-Deckard, K. (2004). Do risk factors for problem behaviour act in a cumulative manner? An examination of ethnic minority and majority children through an ecological perspective. Journal of Child Psychology and Psychiatry, 45(4), 707–718. doi:10.1111/j.1469-7610.2004.00265.x.

    Article  PubMed  Google Scholar 

  • Bar, R., & DeSouza, J. (2016). Tracking plasticity: effects of long term rehearsal in expert dancers encoding music to movement. PloS One, 11(1), e147732. doi:10.1371/journal.pone.0147731.

    Article  Google Scholar 

  • Buehler, C., & Gerard, G. (2013). Cumulative family risk predicts increases in adjustment difficulties across early adolescence. Journal of Youth and Adolescence, 42(6), 905–920.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. National Review of Neuroscience, 10(3), 186–198. doi:10.1038/nrn2575.

  • Callicott, J., Mattay, V., Bertolino, A., Finn, A., Coppola, R., Frank, J., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.

    Article  PubMed  Google Scholar 

  • Carlson, R. A., & Lundy, D. H. (1992). Consistency and restructuring in cognitive procedural sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 127–141.

    Google Scholar 

  • Chess, S., & Thomas, A. B. (1967). Behavior problems revisited: Findings of an anterospective study. Journal of the American Academy of Child Psychiatry, 6(2), 321–331.

    Article  PubMed  Google Scholar 

  • Cole, M., Reposv, G., & Anticivic, A. (2014). The frontoparietal control system: A central role in mental health. Neuroscientist, 20(6), 652–664. doi:10.1177/1073858414525995.

  • Elman, J. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48(1), 71–99.

    Article  PubMed  Google Scholar 

  • Fields, D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neuroscience, 31(7), 361–370. doi:10.1016/j.tins.2008.04.001.

    Article  Google Scholar 

  • Fields, D. (2010). Change in the Brain’s white matter the role of the brain’s white matter in active learning and memory may be underestimated. Science, 330, 768–769. doi:10.1126/science.1199139.

    Article  PubMed  PubMed Central  Google Scholar 

  • McClure, S., York, M., & Montague, P. (2004). The neural substrates of reward processing in humans: The modern role of fMRI. The Neuroscientist, 10(3), 260–268. doi:10.1177/1073858404263526.

    Article  PubMed  Google Scholar 

  • Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends in Cognitive Science, 17, 627–640. doi:10.1016/j.tics.2013.09.015.

    Article  Google Scholar 

  • Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326. doi:10.1037/0033-2909.132.2.297.

    Article  PubMed  Google Scholar 

  • Nomi, J. S., Vij, S. G., Dajani, D. R., Steimke, R., Damaraju, E., Rachakonda, S., et al. (2017). Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage, 147, 861–871.

    Article  PubMed  Google Scholar 

  • Rawson, K. (2010). Defining and investigating automaticity in reading. In B. Ross (Ed.), The psychology of learning and motivation (pp. 185–230). Burlington, NJ: Elsevier.

    Chapter  Google Scholar 

  • Rutter, M. (2006). Genes and behavior: Nature-nurture interplay explained. Malden, MA: Blackwell Publishing.

    Google Scholar 

  • Schmithorst, V., Wilke, M., Dardzinski, B., & Holland, S. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MR imaging study. Human Brain Mapping, 26(2), 139–147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shell, D., Brooks, D., Trainin, G., Wilson, K., Kauffman, D., & Herr, L. (2010). The unified learning model. New York: Springer.

    Book  Google Scholar 

  • Thiel, A., Thiel, J., Oddo, S., Langnickel, R., Brand, M. M., & Stirn, A. (2014). CD-patients with washing symptoms show a specific brain network when confronted with aggressive, sexual and disgusting stimuli. Neuropsychoanalysis. doi:10.1080/15294145.2014.976649. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/15294145.2014.976649#.VHVnSMlRaU9.

  • van den Heuvel, M., Mandl, R., & Hulshoff-Pol, H. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141. doi:10.1002/hbm.20737.

    Article  PubMed  Google Scholar 

  • Wasserman, T., & Wasserman, L. (2016). Depathologizing psychopathology. New York: Springer.

    Book  Google Scholar 

  • What is the connectome. (2014). Retrieved from The Brain Preservation Foundation: http://www.brainpreservation.org/content/connectome

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wasserman, T., Wasserman, L.D. (2017). The Theoretical Basis for Neurocognitive Learning Therapy. In: Neurocognitive Learning Therapy: Theory and Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-60849-5_2

Download citation

Publish with us

Policies and ethics