Skip to main content

Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure

  • Chapter
  • First Online:
OpenFOAM®

Abstract

This paper describes a self-contained, partitioned fluid–structure interaction solver based on a finite volume discretisation. The incompressible fluid flow is described by the Navier–Stokes equations in the arbitrary Lagrangian–Eulerian form and the solid deformation is described by the St. Venant-Kirchhoff hyperelastic model in the total Lagrangian form. Both fluid and solid are discretised in space using the second-order accurate cell-centred finite volume method, and temporal discretisation is performed using the first-order accurate implicit Euler scheme. Coupling between fluid and solid is performed using a Robin-Neumann partitioned procedure based on a new Robin boundary condition for pressure. The solver has been tested on the wave propagation in an elastic tube test case characterised by a low solid-to-fluid density ratio. The first-order temporal accuracy is shown and the stability of the method is demonstrated for both the strongly coupled and loosely coupled versions of the solution procedure. It is also shown that the proposed methodology can efficiently handle FSI cases in which the fluid domain is entirely enclosed by Dirichlet boundary conditions, even for the case of geometrically nonlinear elastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is assumed that for the considered test case (large artery and small pressure change), the blood can be considered as an incompressible Newtonian fluid.

References

  1. Küttler, U., Wall, W.A.: Fixed–point fluid–structure interaction solvers with dynamic relaxation. Computational mechanics 43(1), 61–72 (2008)

    Article  MATH  Google Scholar 

  2. Degroote, J., Bathe, K.J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Computers and structures 87, 793–801 (2009)

    Article  Google Scholar 

  3. Bukač, M., Čanić, S., Glowinski, R., Tambača, J., Quaini, A.: Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics 235, 515–541 (2013)

    Article  MathSciNet  Google Scholar 

  4. Guidoboni, G., Glowinski, R., Cavallini, N., Čanić, S.: Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. Journal of Computational Physics 228(18), 6916–6937 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for fsi problems. part i: Incompressible flow and elastic solids. Journal of Computational Physics 269, 108–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demirdžić, I., Perić, M.: Space conservation law in finite volume calculations of fluid flow. International journal for numerical methods in fluids 8(9), 1037–1050 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on movining grids. AIAA Journal 17, 1030–1037 (1979)

    Article  MATH  Google Scholar 

  8. Jasak, H., Weller, H.G.: Application of the finite volume method and unstructured meshes to linear elasticity. International journal for numerical methods in engineering 48(2), 267–287 (2000)

    Article  MATH  Google Scholar 

  9. Batchelor, F.R.: An introduction to fluid dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  10. Causin, P., Gerbeau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid?structure problems. Computer Methods in Applied Mechanics and Engineering 194((42-44)), 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Čanić, S., Muha, B., Bukač, M.: Stability of the kinematically coupled \(\beta \)-scheme for fluid-structure interaction problems in hemodynamics. International Journal of Numerical Analysis and Modeling 12(1), 54–80 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Ferziger, J.H., Perić, M.: Computational methods for fluid dynamics. Springer Verlag, Berlin-New York (1995)

    Google Scholar 

  13. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  14. Tuković, Ž., Jasak, H.: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers and fluids 55, 70–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gillebaart, T., Blom, D.S., van Zuijlen, A.H., Bijl, H.: Time consistent fluid structure interaction on collocated grids for incompressible flow. Computer Methods in Applied Mechanics and Engineering 298(0), 159–182 (2016)

    Article  MathSciNet  Google Scholar 

  16. Jasak, H., Tuković, Ž.: Automatic mesh motion for the unstructured finite volume method. Transactions of FAMENA 30(2), 1–20 (2006)

    Google Scholar 

  17. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of computational physics 62(1), 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jacobs, D.A.H.: Preconditioned Conjugate Gradient methods for solving systems of algebraic equations. Tech. Rep. RD/L/N193/80, Central Electricity Research Laporatories (1980)

    Google Scholar 

  19. Kershaw, D.: The incomplete cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Journal of Computational Physics 26(1), 43–65 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kanyanta, V., Ivankovic, A., Karac, A.: Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries. Journal of Biomechanics 42(11), 1705–1712 (2009)

    Article  Google Scholar 

  21. Wylie, E.B., Streeter, V.L.: Fluid Transients in Systems. Englewood Cliffs, New York (1993)

    Google Scholar 

  22. Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics 29, 123–160 (1997)

    Article  MathSciNet  Google Scholar 

  23. Küttler, U., Förster, C., Wall, W.A.: A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure dirichlet fluid domains. Computational mechanics 38, 417–429 (2006)

    Article  MATH  Google Scholar 

  24. Badia, S., Nobile, F., Vergara, C.: Robin-robin preconditioned krylov methods for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering 198, 2768–2784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Tuković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuković, Ž., Bukač, M., Cardiff, P., Jasak, H., Ivanković, A. (2019). Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure. In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics