Skip to main content

A New Approach to Evaluate the Sustainability of Raw Materials Substitution

  • Chapter
  • First Online:
Raw Materials Substitution Sustainability

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Despite that the resource depletion problem affects the European society, insufficient measures to preserve natural resources are proposed by recent developed policies. In particular few attentions are devoted to wastes and by-products recovery strategies and incentives. More legislative efforts must be devoted to promote raw materials substitution and support industries that are working in this direction, to achieve a circular Europe. The aim of this chapter is to introduce a simplified route to quantify the environmental sustainability of raw materials substitution. A SUB-RAW index is defined, based on the use of two parameters accounting the energies and the emissions involved in the formation of a material (i.e. embodied energy and CO2 footprint). The proposed index is used in three practical examples to evaluate the possibility of some raw materials substitution. It concerns the partial substitution of Portland cement with coal fly ash (CFA), the reuse of CFA to replace activated carbon in some adsorption processes and the use of a new stabilized filler (COSMOS) instead of natural fillers in polypropylene plastic composites. The SUB-RAW index represents a simplified and valuable approach for the quantification of the sustainability of a material substitution. The simplicity of the chosen parameters makes this evaluation method very simple and low onerous; then it can be used by industries to select suitable materials for future investments in the green economy. A knowledge-based decision support system can increase the capability and flexibility in the materials selection. Additionally it is demonstrated that SUB-RAW index can be used to design new materials, based on wastes and by-products, with increased sustainability in respect to the corresponding natural resources. This can be considered an additional strategy to incentivate materials eco-design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almlund P, Jespersen PH, Riis S (2012) Rethinking climate change research: clean technology, culture and communication. Ashgate Publishing

    Google Scholar 

  • Arfaoui N, Brouillat E, Saint Jean M (2014) Policy design and technological substitution: Investigating the REACH regulation in an agent-based model. Ecol Econ 107:347–365. doi:10.1016/j.ecolecon.2014.08.013

    Article  Google Scholar 

  • Ashby MF (2012) Materials and the environment: eco-informed material choice, 2nd edn. Elsevier Science

    Google Scholar 

  • Attari M, Bukhari SS, Kazemian H, Rohani S (2017) A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J Environ Chem Eng 5:391–399. doi:10.1016/j.jece.2016.12.014

    Article  Google Scholar 

  • Benassi L, Dalipi R, Consigli V, Pasquali M, Borgese L, Depero LE, Clegg F, Bingham PA, Bontempi E (2017) Integrated management of ash from industrial and domestic combustion: a new sustainable approach for reducing greenhouse gas emissions from energy conversion. Environ Sci Pollut Res 24:14834–14846. doi:10.1007/s11356-017-9037-y

    Article  Google Scholar 

  • Benassi L, Franchi F, Catina D, Cioffi F, Rodella N, Borgese L, Pasquali M, Depero L, Bontempi E (2015) Rice husk ash to stabilize heavy metals contained in municipal solid waste incineration fly ash: first results by applying new pre-treatment technology. Materials (Basel) 8:6868–6879. doi:10.3390/ma8105346

    Article  Google Scholar 

  • Benassi L, Pasquali M, Zanoletti A, Dalipi R, Borgese L, Depero LE, Vassura I, Quina MJ, Bontempi E (2016) Chemical stabilization of municipal solid waste incineration fly ash without any commercial chemicals: first pilot-plant scaling up. ACS Sustain Chem Eng 4:5561–5569. doi:10.1021/acssuschemeng.6b01294

    Article  Google Scholar 

  • Besco S, Bosio A, Brisotto M, Depero L, Lorenzetti A, Bontempi E, Bonora R, Modesti M (2014) Structural and mechanical characterization of sustainable composites based on recycled and stabilized fly ash. Materials (Basel) 7:5920–5933. doi:10.3390/ma7085920

    Article  Google Scholar 

  • Besco S, Brisotto M, Gianoncelli A, Depero LE, Bontempi E, Lorenzetti A, Modesti M (2013) Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration. J Appl Polym Sci 130:4157–4164. doi:10.1002/app.39692

    Google Scholar 

  • BIS (1991) IS 1489-1: Specification for Portland pozzolana cement, Part 1: Fly ash based, Amendment no. 3, Bureau of Indian Standards

    Google Scholar 

  • Bonomo L (2008) Wastewater treatment. McGraw Hill Education, Italy

    Google Scholar 

  • Bontempi E (2017) A new approach for evaluating the sustainability of raw materials substitution based on embodied energy and the CO2 footprint. J Clean Prod 162:162–169. doi:10.1016/j.jclepro.2017.06.028

    Article  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE, Tenini S, Depero LE (2010) A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J Environ Monit 12:2093–2099. doi:10.1039/c0em00168f

    Article  Google Scholar 

  • Bosio A, Rodella N, Gianoncelli A, Zacco A, Borgese L, Depero LE, Bingham PA, Bontempi E (2013) A new method to inertize incinerator toxic fly ash with silica from rice husk ash. Environ Chem Lett 11:329–333. doi:10.1007/s10311-013-0411-9

    Article  Google Scholar 

  • Bosio A, Zacco A, Borgese L, Rodella N, Colombi P, Benassi L, Depero LE, Bontempi E (2014) A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: a green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem Eng J 253:377–384. doi:10.1016/j.cej.2014.04.080

    Article  Google Scholar 

  • Cai J, Shen B, Li Z, Chen J, He C (2014) Removal of elemental mercury by clays impregnated with KI and KBr. Chem Eng J 241:19–27. doi:10.1016/j.cej.2013.11.072

    Article  Google Scholar 

  • Callan S, Thomas JM (2013) Environmental economics & management: theory, policy, and applications, 6th edn. South-Western College Pub

    Google Scholar 

  • De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40. doi:10.1016/j.susmat.2016.06.002

    Google Scholar 

  • EC (2005) Taking sustainable use of resources forward: a thematic strategy on the prevention and recycling of waste, COM (2005) 666 final. Brussels

    Google Scholar 

  • EC (2006) Regulation (EC) n°1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

    Google Scholar 

  • EC (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off J Eur Union L312:3–30

    Google Scholar 

  • EC (2011) Council Regulation (EU) No 333/2011 of 31 March 2011 establishing criteria determining when certain types of scrap metal cease to be waste under Directive 2008/98/EC of the European Parliament and of the Council. Off J Eur Union L94/2-L94/11

    Google Scholar 

  • EC (2013) Strategic implementation plan for the european innovation partnership on raw materials—Part II. https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/content/strategic-implementation-plan-part-ii#II.7 Optimised

  • EC (2014) Communication from the Commission to the European Parliament on the review of the list of critical raw materials for the EU and the implementation of the Raw Material Initiative

    Google Scholar 

  • EC (2016) Raw Materials Scoreboard. https://bookshop.europa.eu/en/raw-materials-scoreboard-pbET0416759/

  • EIT (2016) Raw materials business ideas competition. European Institute of Innovation and Technology (EIT). https://eit.europa.eu/newsroom/eit-raw-materials-business-ideas-competition. Accessed 11 Jun 2017

  • Eurostat Eurostat-Your key to European statistics. http://ec.europa.eu/eurostat. Accessed 21 May 2017

  • Eurostat (2009) The REACH baseline study, a tool to monitor the new EU policy on chemicals-REACH (Registration, Evaluation, Authorisation and restriction of Chemicals)

    Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2:239–259. doi:10.1016/j.jece.2013.12.019

    Article  Google Scholar 

  • GRANTA CES Selector 2016. https://www.grantadesign.com/it/products/ces/. Accessed 21 May 2017

  • Guarienti M, Cardozo SM, Borgese L, Lira GR, Depero LE, Bontempi E, Presta M (2016) COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues. Environ Pollut 214:713–721. doi:10.1016/j.envpol.2016.04.053

    Article  Google Scholar 

  • Guarienti M, Gianoncelli A, Bontempi E, Moscoso Cardozo S, Borgese L, Zizioli D, Mitola S, Depero LE, Presta M (2014) Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology. J Hazard Mater 279:311–321. doi:10.1016/j.jhazmat.2014.07.017

    Article  Google Scholar 

  • Hemalatha T, Ramaswamy A (2017) A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. J Clean Prod 147:546–559. doi:10.1016/j.jclepro.2017.01.114

    Article  Google Scholar 

  • Hukari S, Hermann L, Nättorp A (2016) From wastewater to fertilisers? Technical overview and critical review of European legislation governing phosphorus recycling. Sci Total Environ 542:1127–1135. doi:10.1016/j.scitotenv.2015.09.064

    Article  Google Scholar 

  • Jamieson E, McLellan B, van Riessen A, Nikraz H (2015) Comparison of embodied energies of ordinary Portland Cement with Bayer-derived geopolymer products. J Clean Prod 99:112–118. doi:10.1016/j.jclepro.2015.03.008

    Article  Google Scholar 

  • Jänicke M (2012) Dynamic governance of clean-energy markets: how technical innovation could accelerate climate policies. J Clean Prod 22:50–59. doi:10.1016/j.jclepro.2011.09.006

    Article  Google Scholar 

  • JRC (2008) End of Waste Criteria, Final Report

    Google Scholar 

  • Koppelaar RHEM, Weikard HP (2013) Assessing phosphate rock depletion and phosphorus recycling options. Glob Environ Chang 23:1454–1466. doi:10.1016/j.gloenvcha.2013.09.002

    Article  Google Scholar 

  • Li J, Maroto-Valer MM (2012) Computational and experimental studies of mercury adsorption on unburned carbon present in fly ash. Carbon N Y 50:1913–1924. doi:10.1016/j.carbon.2011.12.042

    Article  Google Scholar 

  • Liu M, Hou L-A, Xi B, Zhao Y, Xia X (2013) Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Appl Surf Sci 273:706–716. doi:10.1016/j.apsusc.2013.02.116

    Article  Google Scholar 

  • Liu R, Durham SA, Rens KL, Ramaswami A (2012) Optimization of cementitious material content for sustainable concrete mixtures. J Mater Civ Eng 24:745–753. doi:10.1061/(ASCE)MT.1943-5533.0000444

    Article  Google Scholar 

  • Marjaba GE, Chidiac SE (2016) Sustainability and resiliency metrics for buildings—critical review. Build Environ 101:116–125. doi:10.1016/j.buildenv.2016.03.002

    Article  Google Scholar 

  • Peters K (2016) Methodological issues in life cycle assessment for remanufactured products: a critical review of existing studies and an illustrative case study. J Clean Prod 126:21–37. doi:10.1016/j.jclepro.2016.03.050

    Article  Google Scholar 

  • Piccinelli E, Lasagni M, Collina E, Bonaiti S, Bontempi E (2017) Effect of COSMOS technologies in detoxifying municipal solid waste incineration fly ash, preliminary results. IOP Conf Ser Earth Environ Sci 64:12068. doi:10.1088/1755-1315/64/1/012068

    Article  Google Scholar 

  • Ponsot I, Bernardo E, Bontempi E, Depero L, Detsch R, Chinnam RK, Boccaccini AR (2015) Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. J Clean Prod 89:224–230. doi:10.1016/j.jclepro.2014.10.091

    Article  Google Scholar 

  • Quale J, Eckelman MJ, Williams KW, Sloditskie G, Zimmerman JB (2012) Construction matters: comparing environmental impacts of building modular and conventional homes in the United States. J Ind Ecol 16:243–253. doi:10.1111/j.1530-9290.2011.00424.x

    Article  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Assess 13:290–300. doi:10.1007/s11367-008-0008-x

    Article  Google Scholar 

  • Rodella N, Bosio A, Dalipi R, Zacco A, Borgese L, Depero LE, Bontempi E (2014) Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab J Chem. doi:10.1016/j.arabjc.2014.04.006

    Google Scholar 

  • Rodella N, Pasquali M, Zacco A, Bilo F, Borgese L, Bontempi N, Tomasoni G, Depero LE, Bontempi E (2016) Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials. Heliyon. doi:10.1016/j.heliyon.2016.e00163

    Google Scholar 

  • Struis RPWJ, Pasquali M, Borgese L, Gianoncelli A, Gelfi M, Colombi P, Thiaudière D, Depero LE, Rizzo G, Bontempi E (2013) Inertisation of heavy metals in municipal solid waste incineration fly ash by means of colloidal silica—a synchrotron X-ray diffraction and absorption study. RSC Adv 3:14339–14351. doi:10.1039/c3ra41792a

  • Tojo N, Fischer C (2011) Europe as a recycling society. European Recycling Policies in relation to the actual recycling achieved

    Google Scholar 

  • Toller S, Carlsson A, Wadeskog A, Miliutenko S, Finnveden G (2013) Indicators for environmental monitoring of the Swedish building and real estate management sector. Build Res Inf 41:146–155. doi:10.1080/09613218.2012.749747

    Article  Google Scholar 

  • Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236. doi:10.1002/pc.22654

    Article  Google Scholar 

  • Valderrama C, Granados R, Cortina JL, Gasol CM, Guillem M, Josa A (2013) Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J Clean Prod 51:205–213. doi:10.1016/j.jclepro.2013.01.026

    Article  Google Scholar 

  • Wang C, Li J, Sun X, Wang L, Sun X (2009) Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. J Environ Sci 21:127–136. doi:10.1016/S1001-0742(09)60022-X

    Article  Google Scholar 

  • WBCSD, IEA (2009) Cement technology roadmap 2009, Carbon emissions reductions up to 2050, World Business Council for Sustainable Development and International Energy Agency

    Google Scholar 

  • Zacco A, Gianoncelli A, Ardesi R, Sacrato S, Guerini L, Bontempi E, Tomasoni G, Alberti M, Depero LE (2012) Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: first results about reuse. Clean Technol Environ Policy 14:291–297. doi:10.1007/s10098-011-0401-1

    Article  Google Scholar 

  • Zanoletti A, Federici S, Borgese L, Bergese P, Ferroni M, Depero LE, Bontempi E (2017) Embodied energy as key parameter for sustainable materials selection: the case of reusing coal fly ash for removing anionic surfactants. J Clean Prod 141:230–236. doi:10.1016/j.jclepro.2016.09.070

    Article  Google Scholar 

  • Zorpas AA (2016) Sustainable waste management through end-of-waste criteria development. Environ Sci Pollut Res 23:7376–7389. doi:10.1007/s11356-015-5990-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Bontempi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Bontempi, E. (2017). A New Approach to Evaluate the Sustainability of Raw Materials Substitution. In: Raw Materials Substitution Sustainability. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-60831-0_4

Download citation

Publish with us

Policies and ethics